

1

Learn Java/J2EE core concepts and design/coding issues

With

Java/J2EE Job Interview Companion

By

K.Arulkumaran

Technical Reviewers

Craig Malone
Lara D’Albreo
Stuart Watson

Acknowledgements

A. Sivayini
R.Kumaraswamipillai

Cover Design

K. Arulkumaran
A.Sivayini

2

Java/J2EE
Job Interview Companion

Copy Right 2005 K.Arulkumaran

The author has made every effort in the preparation of this book to ensure the accuracy of the information. However,
information in this book is sold without warranty either express or implied. The author will not be held liable for any

damages caused or alleged to be caused either directly or indirectly by this book.

3

Outline

SECTION DESCRIPTION

What this book will do for you?

Motivation for this book

Key Areas index

SECTION 1 Interview questions and answers on:

Java

 Language Fundamentals
 Swing
 Applet
 Performance and memory Leaks.
 Personal

SECTION 2 Interview questions and answers on:

Enterprise Java

 J2EE
 Servlet
 JSP
 JDBC
 JNDI
 RMI
 EJB
 JMS
 XML
 SQL, Database tuning and O/R mapping
 RUP & UML
 Struts
 Web and Application servers.
 Best practices and performance considerations.
 Testing and deployment.
 Personal

SECTION 3 Putting it all together section.

How would you go about…?

1. How would you go about documenting your Java/J2EE application?

2. How would you go about designing a Java/J2EE application?

3. How would you go about identifying performance problems and/or memory leaks in your Java

application?

4. How would you go about minimising memory leaks in your Java/J2EE application?

5. How would you go about improving performance of your Java/J2EE application?

6. How would you go about identifying any potential thread-safety issues in your Java/J2EE

application?

7. How would you go about identifying any potential transactional issues in your Java/J2EE

application?

8. How would you go about applying the Object Oriented (OO) design concepts in your Java/J2EE

4

application?

9. How would you go about applying the UML diagrams in your Java/J2EE project?

10. How would you go about describing the software development processes you are familiar with?

11. How would you go about applying the design patterns in your Java/J2EE application?

12. How would you go about determining the enterprise security requirements for your Java/J2EE

application?

13. How would you go about describing the open source projects like JUnit (unit testing), Ant (build

tool), CVS (version control system) and log4J (logging tool) which are integral part of most
Java/J2EE projects?

14. How would you go about describing Web services?

SECTION 4 Emerging Technologies/Frameworks

 Test Driven Development (TDD).

 Aspect Oriented Programming (AOP).

 Inversion of Control (IOC) (Also known as Dependency Injection).

 Annotations or attributes based programming (xdoclet etc).

 Spring framework.

 Hibernate framework.

 EJB 3.0.

 JavaServer Faces (JSF) framework.

SECTION 5 Sample interview questions …

 Java

 Web Components

 Enterprise

 Design

 General

GLOSSARY OF TERMS

RESOURCES

INDEX

5

Table of contents

Outline___ 3
Table of contents __ 5
What this book will do for you? __ 7
Motivation for this book __ 8
Key Areas Index __ 10
Java – Interview questions & answers ___ 11

Java – Language Fundamentals __ 12
Java – Swing __ 44
Java – Applet__ 48
Java – Performance and Memory leaks __ 50
Java – Personal__ 53
Java – Key Points __ 56

Enterprise Java – Interview questions & answers __ 59
Enterprise - J2EE __ 60
Enterprise - Servlet___ 69
Enterprise - JSP ___ 77
Enterprise - JDBC __ 83
Enterprise – JNDI & LDAP ___ 87
Enterprise - RMI ___ 90
Enterprise – EJB 2.x __ 94
Enterprise - JMS __ 110
Enterprise - XML __ 114
Enterprise – SQL, Tuning and O/R mapping ___ 119
Enterprise - RUP & UML__ 126
Enterprise - Struts___ 133
Enterprise - Web and Application servers ___ 137
Enterprise - Best practices and performance considerations ___ 139
Enterprise – Logging, testing and deployment ___ 141
Enterprise - Personal __ 144
Enterprise – Software development process___ 144
Enterprise – Key Points __ 146

How would you go about…?___ 151
Q 01: How would you go about documenting your Java/J2EE application? ____________________________________ 152
Q 02: How would you go about designing a Java/J2EE application? __ 153
Q 03: How would you go about identifying performance and/or memory issues in your Java/J2EE application? _____ 156
Q 04: How would you go about minimising memory leaks in your Java/J2EE application? _______________________ 157
Q 05: How would you go about improving performance in your Java/J2EE application? _________________________ 157
Q 06: How would you go about identifying any potential thread-safety issues in your Java/J2EE application?_______ 158
Q 07: How would you go about identifying any potential transactional issues in your Java/J2EE application?_______ 159
Q 08: How would you go about applying the Object Oriented (OO) design concepts in your Java/J2EE application? _ 160
Q 09: How would you go about applying the UML diagrams in your Java/J2EE project? _________________________ 162

6

Q 10: How would you go about describing the software development processes you are familiar with? ____________163
Q 11: How would you go about applying the design patterns in your Java/J2EE application? _____________________165
Q 12: How would you go about determining the enterprise security requirements for yor Java/J2EE application? ____194
Q 13: How would you go about describing the open source projects like JUnit (unit testing), Ant (build tool), CVS
(version control system) and log4J (logging tool) which are integral part of most Java/J2EE projects? ________________199
Q 14: How would you go about describing Web services? __206

Emerging Technologies/Frameworks… __210
Q 01: What is Test Driven Development (TDD)? ___211
Q 02: What is the point of Test Driven Development (TDD)? ___211
Q 03: What is aspect oriented programming? Explain AOP?___212
Q 04: What are the differences between OOP and AOP? __214
Q 05: What are the benefits of AOP?___214
Q 06: What is attribute or annotation oriented programming?__215
Q 07: What are the pros and cons of annotations over XML based deployment descriptors?______________________215
Q 08: What is XDoclet? __216
Q 09: What is inversion of control (IOC) (also known as dependency injection)? ________________________________216
Q 10: What are the different types of dependency injections?__217
Q 11: What are the benefits of IOC (aka Dependency Injection)? ___217
Q 12: What is the difference between a service locator pattern and an inversion of control pattern? _______________217
Q 13: Why dependency injection is more elegant than a JNDI lookup to decouple client and the service? ___________218
Q 14: Explain Object-to-Relational (O/R) mapping? __218
Q 15: Give an overview of hibernate framework? __218
Q 16: Explain some of the pitfalls of Hibernate and explain how to avoid them? ________________________________220
Q 17: Give an overview of the Spring framework? ___221
Q 18: How would EJB 3.0 simplify your Java development compared to EJB 1.x, 2.x? ___________________________222
Q 19: Briefly explain key features of the JavaServer Faces (JSF) framework? __________________________________223
Q 20: How would the JSF framework compare with the Struts framework?_____________________________________225

Sample interview questions… __226
Java___227
Web components__227
Enterprise__227
Design___229
General __229

GLOSSARY OF TERMS__230
RESOURCES __232
INDEX __234

7

What this book will do for you?

Have you got the time to read 10 or more books and articles to add value prior to the interview? This book has been
written mainly from the perspective of Java/J2EE job seekers and interviewers. There are numerous books and articles
on the market covering specific topics like Java, J2EE, EJB, Design Patterns, ANT, CVS, Multi-Threading, Servlets, JSP,
emerging technologies like AOP (Aspect Oriented Programming), Test Driven Development (TDD), Inversion of Control
(IoC) etc. But from an interview perspective it is not possible to brush up on all these books where each book usually has
from 300 pages to 600 pages. The basic purpose of this book is to cover all the core concepts and design/coding issues
which, all Java/J2EE developers, designers and architects should be conversant with to perform well in their current jobs
and to launch a successful career by doing well at interviews. The interviewer can also use this book to make sure that
they hire the right candidate depending on their requirements. This book contains a wide range of topics relating to
Java/J2EE development in a concise manner supplemented with diagrams, tables, sample codes and examples. This
book is also appropriately categorised to enable you to choose the area of interest to you.

This book will assist all Java/J2EE practitioners to become better at what they do. Usually it takes years to understand all
the core concepts and design/coding issues when you rely only on your work experience. The best way to fast track this
is to read appropriate technical information and proactively apply these in your work environment. It worked for me and
hopefully it will work for you as well. I was also at one stage undecided whether to name this book “Java/J2EE core
concepts and solving design/coding issues” or “Java/J2EE Job Interview Companion”. The reason I chose
“Java/J2EE Job Interview Companion” is because these core concepts and design/coding issues helped me to be
successful in my interviews and also gave me thumbs up in code reviews.

8

 Motivation for this book

I started using Java in 1999 when I was working as a junior developer. During those two years as a permanent employee,
I pro-actively spent many hours studying the core concepts behind Java/J2EE in addition to my hands on practical
experience. Two years later I decided to start contracting. Since I started contracting in 2001, my career had a much-
needed boost in terms of contract rates, job satisfaction, responsibility etc. I moved from one contract to another with a
view of expanding my skills and increasing my contract rates.

In the last 5 years of contracting, I have worked for 5 different organisations both medium and large on 8 different
projects. For each contract I held, on average I attended 6-8 interviews with different companies. In most cases multiple
job offers were made and consequently I was in a position to negotiate my contract rates and also to choose the job I
liked based on the type of project, type of organisation, technology used, etc. I have also sat for around 10 technical tests
and a few preliminary phone interviews.

The success in the interviews did not come easily. I spent hours prior to each set of interviews wading through various
books and articles as a preparation. The motivation for this book was to collate all this information into a single book,
which will save me time prior to my interviews but also can benefit others in their interviews. What is in this book has
helped me to go from just a Java/J2EE job to a career in Java/J2EE in a short time. It has also given me the job
security that ‘I can find a contract/permanent job opportunity even in the difficult job market’.

I am not suggesting that every one should go contracting but by performing well at the interviews you can be in a position
to pick the permanent role you like and also be able to negotiate your salary package. Those of you who are already in
good jobs can impress your team leaders, solution designers and/or architects for a possible promotion by demonstrating
your understanding of the key areas discussed in this book. You can discuss with your senior team members about
performance issues, transactional issues, threading issues (concurrency issues) and memory issues. In most of
my previous contracts I was in a position to impress my team leads and architects by pinpointing some of the critical
performance, memory, transactional and threading issues with the code and subsequently fixing them. Trust me it is not
hard to impress someone if you understand the key areas.

For example:

 Struts action classes are not thread-safe (Refer Q113 in Enterprise section).
 JSP variable declaration is not thread-safe (Refer Q34 in Enterprise section).
 Valuable resources like database connections should be closed properly to avoid any memory and performance

issues (Refer Q45 in Enterprise section).
 Throwing an application exception will not rollback the transaction in EJB. (Refer Q77 in Enterprise section).

The other key areas, which are vital to any software development, are a good understanding of some of key design
concepts, design patterns, and a modelling language like UML. These key areas are really worthy of a mention in
your resume and interviews.

For example:

 Know how to use inheritance, polymorphism and encapsulation (Refer Q5, Q6, Q7, and Q8 in Java section.).
 Why use design patterns? (Refer Q5 in Enterprise section).
 Why is UML important? (Refer Q106 in Enterprise section).

If you happen to be in an interview with an organization facing serious issues with regards to their Java application
relating to memory leaks, performance problems or a crashing JVM etc then you are likely to be asked questions on
these topics. Refer Q 63 – Q 65 in Java section and Q123, Q125 in Enterprise section.

Another good reason why these key areas like transactional issues, design concepts, design patterns etc are vital are
because solution designers, architects, team leads, and/or senior developers are usually responsible for conducting the
technical interviews. These areas are their favourite topics because these are essential to any software development.

Some interviewers request you to write a small program during interview or prior to getting to the interview stage. This is
to ascertain that you can code using object oriented concepts and design patterns. So I have included a coding key area
to illustrate what you need to look for while coding.

9

 Apply OO concepts like inheritance, polymorphism and encapsulation: Refer Q08 in Java section.
 Program to interfaces not to implementations: Refer Q08, Q15 in Java section.
 Use of relevant design patterns: Refer Q11 in How would you go about… section.
 Use of Java collection API and exceptions correctly: Refer Q15, Q34, and Q35 in Java section.
 Stay away from hard coding values: Refer Q04 in Java section.

L a n g u a g e

F u n d a m e n t a ls

D e s ig n

C o n c e p t s
D e s ig n

P a t t e r n s
S E c u r i t y

C o n c u r r e n c y

I s s u e s

P e r f o r m a n c e

I s s u e s

M e m o r y

I s s u e s

S c a la b i l i t y

I s s u e s

S p e c if ic a t io n

F u n d a m e n t a ls
E x c e p t io n

H a n d l in g

T r a n s a c t io n a l

I s s u e s

B e s t

P r a c t ic e s

S o f t w a r e

D e v e lo p m e n t
P r o c e s s

C O d in g

L F D C

D P S F

C I P I

M I S I

S E E H

T I B P

S D

C O

H o w m a n y b o o k s d o I h a v e to r e a d to
u n d e r s ta n d a n d p u t to g e th e r a l l th e s e
k e y a r e a s ?

H o w m a n y y e a rs o f e x p e r ie n c e
s h o u ld I h a v e to u n d e rs ta n d a l l th e s e
k e y a r e a s ?

W il l th e s e k e y a r e a s h e lp m e
p r o g r e s s in m y c a re e r ?

W il l th e s e k e y a r e a s h e lp m e c u t
q u a l ity c o d e ?

This book aims to solve the above dilemma.

My dad keeps telling me to find a permanent job (instead of contracting), which in his view provides better job security but
I keep telling him that in my view in Information Technology the job security is achieved only by keeping your knowledge
and skills sharp and up to date. The 8 contract positions I held over the last 5.5 years have given me broader experience
in Java/J2EE and related technologies. It also kept me motivated since there was always something new to learn in each
assignment, and not all companies will appreciate your skills and expertise until you decide to leave. Do the following
statements sound familiar to you when you hand in your resignation or decide not to extend your contract after getting
another job offer? “Can I tempt you to come back? What can I do to keep you here?” etc. You might even think why you
waited so long. The best way to make an impression in any organisations is to understand and proactively apply and
resolve the issues relating to the Key Areas discussed in the next section. But be a team player, be tactful and don’t
be critical of everything, do not act in a superior way and have a sense of humour.

“Technical skills must be complemented with interpersonal skills.”

Quick Read guide: It is recommended that you go through all the questions in all the sections but if you are pressed for time or would
like to read it just before an interview then follow the steps shown below:

1. Read/Browse Popular Questions in Java and Enterprise Java sections.
2. Read/Browse Key Points in Java and Enterprise Java sections.
3. Read/Browse through “Emerging Technologies/Frameworks” section.
4. Read/Browse “How would you go about…” section excluding Q11 & Q13, which are discussed in detail.

10

 Key Areas Index

I have categorised the core concepts and issues into 14 key areas as listed below. These key areas are vital for any
good software development. This index will enable you to refer to the questions based on key areas. Also note that each
question has an icon next to it to indicate which key area or areas it belongs to. Additional reading is recommended for
beginners in each of the key areas.

Key Areas icon Question Numbers

 Java section Enterprise section How
would you

go
about…?

Emerging
Technologies
/Frameworks

Language
Fundamentals

LF Q1-Q4, Q10-Q14, Q16-
Q20, Q22-Q27, Q30-
Q33, Q36-Q43, Q47-Q62

- Q10, Q15,
Q17, Q19

Specification
Fundamentals

SF - Q1-Q19, Q26-Q33, Q35-
Q38, Q41, Q42, Q44, Q46-
Q81, Q89-Q97, Q99, 102,
Q110, Q112-Q115, Q118-
Q119, Q121, Q126, Q127,
Q128

Q14

Design Concepts DC Q5-Q9, Q10, Q13, Q22,
Q49

Q2, Q3, Q19, Q20, Q21,
Q31, Q45, Q98, Q106,
Q107, Q108, Q109, 101,
Q111

Q02, Q08,
Q09

Q3-Q9, Q11,
Q13, Q14,
Q16, Q18,
Q20

Design Patterns DP Q10, Q14, Q20, Q31,
Q45, Q46, Q50, Q54,
Q66

Q5, Q5, Q22, Q24, Q25,
Q83, Q84, Q85, Q86, Q87,
Q88, Q110, Q111, Q116

Q11

Q12

Transactional
Issues

TI - Q43, Q71, Q72, Q73, Q74,
Q75, Q77, Q78, Q79

Q7

Concurrency Issues CI Q13, Q15, Q29, Q36,
Q40, Q53

Q16, Q34, Q113 Q6

Performance Issues PI Q13, Q15 -Q22, Q40,
Q53, Q63.

Q10, Q16, Q43, Q45, Q46,
Q72, Q83-Q88, Q97, Q98,
Q100, Q102, Q123, Q125,
Q128

Q3, Q5

Memory Issues MI Q22, Q29, Q32, Q33,
Q36, Q45, Q64, Q65.

Q45, Q93 Q3, Q4

Scalability Issues SI Q19, Q20 Q20, Q21, Q120, Q122
Exception Handling EH Q34,Q35 Q76, Q77
Security SE Q61 Q12, Q13, Q23, Q35, Q46,

Q51, Q58, Q81

Q12

Best Practices BP Q15, Q21, Q34, Q63,
Q64

Q10, Q16, Q39, Q40, Q46,
Q82, Q124, Q125

Software
Development
Process

SD - Q103-Q109, Q129, Q133,
Q134, Q136

Q1, Q10,
Q13

Q1, Q2

Coding1

CO Q04, Q08, Q10, Q12,
Q13, Q15, Q16, Q17,
Q21, Q34, Q45, Q46

Q10, Q18, Q21, Q23, Q36,
Q38, Q42, Q43, Q45, Q74,
Q75, Q76, Q77, Q112,
Q114, Q127, Q128

Q11

1 Some interviewers request you to write a small program during interview or prior to getting to the interview stage. This is to ascertain
that you can code using object oriented concepts and design patterns. I have included a coding key area to illustrate what you need to
look for while coding. Unlike other key areas, the CO is not always shown against the question but shown above the actual section of
relevance within a question.

Java

11

SECTION ONE

Java – Interview questions & answers

 Language Fundamentals LF
 Design Concepts DC
 Design Patterns DP
 Concurrency Issues CI
 Performance Issues PI
 Memory Issues MI
 Exception Handling EH
 Security SE
 Scalability Issues SI
 Coding1 CO

Popular Questions: Q01, Q04, Q07, Q08, Q13, Q16, Q17, Q18, Q19, Q25, Q27, Q29, Q32, Q34, Q40, Q45, Q46, Q50, Q51, Q53, Q54,
Q55, Q63,Q64, Q66, Q67

1 Unlike other key areas, the CO is not always shown against the question but shown above the actual subsection of relevance within a
question.

K
E
Y

A
R
E
A
S

Java

12

Java – Language Fundamentals

Q 01: Give a few reasons for using Java? LF DC
A 01: Java is a fun language. Let’s look at some of the reasons:

 Built-in support for multi-threading, socket communication, and memory management (automatic garbage
collection).

 Object Oriented (OO).

 Better portability than other languages across operating systems.

 Supports Web based applications (Applet, Servlet, and JSP), distributed applications (sockets, RMI. EJB etc)

and network protocols (HTTP, JRMP etc) with the help of extensive standardised APIs (Application Program
Interfaces).

Q 02: What is the main difference between the Java platform and the other software platforms? LF
A 02: Java platform is a software-only platform, which runs on top of other hardware-based platforms like UNIX, NT etc.

The Java platform has 2 components:

 Java Virtual Machine (JVM) – ‘JVM’ is a software that can be ported onto various hardware platforms. Byte
codes are the machine language of the JVM.

 Java Application Programming Interface (Java API) -

Q 03: What is the difference between C++ and Java? LF
A 03: Both C++ and Java use similar syntax and are Object Oriented, but:

 Java does not support pointers. Pointers are inherently tricky to use and troublesome.

 Java does not support multiple inheritances because it causes more problems than it solves. Instead Java
supports multiple interface inheritance, which allows an object to inherit many method signatures from
different interfaces with the condition that the inheriting object must implement those inherited methods. The
multiple interface inheritance also allows an object to behave polymorphically on those methods. [Refer Q 8
and Q 10 in Java section.]

 Java does not support destructors but rather adds a finalize() method. Finalize methods are invoked by the
garbage collector prior to reclaiming the memory occupied by the object, which has the finalize() method. This
means you do not know when the objects are going to be finalized. Avoid using finalize() method to
release non-memory resources like file handles, sockets, database connections etc because Java has only
a finite number of these resources and you do not know when the garbage collection is going to kick in to
release these resources through the finalize() method.

 Java does not include structures or unions because the traditional data structures are implemented as an

object oriented framework (Java collection framework – Refer Q14, Q15 in Java section).

Java

13

 All the code in Java program is encapsulated within classes therefore Java does not have global variables or

functions.

 C++ requires explicit memory management, while Java includes automatic garbage collection. [Refer Q32 in
Java section].

Q 04: Explain Java class loaders? Explain dynamic class loading? LF
A 04: Class loaders are hierarchical. Classes are introduced into the JVM as they are referenced by name in a class that

is already running in the JVM. So how is the very first class loaded? The very first class is specially loaded with
the help of static main() method declared in your class. All the subsequently loaded classes are loaded by the
classes, which are already loaded and running. A class loader creates a namespace. All JVMs include at least one
class loader that is embedded within the JVM called the primordial (or bootstrap) class loader. Now let’s look at
non-primordial class loaders. The JVM has hooks in it to allow user defined class loaders to be used in place of
primordial class loader. Let us look at the class loaders created by the JVM.

CLASS LOADER reloadable? Explanation

Bootstrap
(primordial)

No Loads JDK internal classes, java.* packages. (as defined in the sun.boot.class.path
system property, typically loads rt.jar and i18n.jar)

Extensions No Loads jar files from JDK extensions directory (as defined in the java.ext.dirs system
property – usually lib/ext directory of the JRE)

System No Loads classes from system classpath (as defined by the java.class.path property, which
is set by the CLASSPATH environment variable or –classpath or –cp command line
options)

Bootstrap
(primordial)

(rt.jar, i18.jar)

Extensions
(lib/ext)

System
(-classpath)

Sibling1
classloader

Sibling2
classloader

JVM class loaders

Classes loaded by Bootstrap class loader have no visibility into classes
loaded by its descendants (ie Extensions and Systems class loaders).

The classes loaded by system class loader have visibility into classes loaded
by its parents (ie Extensions and Bootstrap class loaders).

If there were any sibling class loaders they cannot see classes loaded by
each other. They can only see the classes loaded by their parent class
loader. For example Sibling1 class loader cannot see classes loaded by
Sibling2 class loader

Both Sibling1 and Sibling2 class loaders have visibilty into classes loaded
by their parent class loaders (eg: System, Extensions, and Bootstrap)

Class loaders are hierarchical and use a delegation model when loading a class. Class loaders request their
parent to load the class first before attempting to load it themselves. When a class loader loads a class, the child
class loaders in the hierarchy will never reload the class again. Hence uniqueness is maintained. Classes loaded
by a child class loader have visibility into classes loaded by its parents up the hierarchy but the reverse is not true
as explained in the above diagram.

Important: Two objects loaded by different class loaders are never equal even if they carry the same values, which mean a
class is uniquely identified in the context of the associated class loader. This applies to singletons too, where each class
loader will have its own singleton. [Refer Q45 in Java section for singleton design pattern]

Explain static vs. dynamic class loading?

Static class loading Dynamic class loading
Classes are statically loaded with Java’s
“new” operator.

class MyClass {
 public static void main(String args[]) {
 Car c = new Car();
 }
}

Dynamic loading is a technique for programmatically invoking the functions of a
class loader at run time. Let us look at how to load classes dynamically.

Class.forName (String className); //static method which returns a Class

The above static method returns the class object associated with the class
name. The string className can be supplied dynamically at run time. Unlike the
static loading, the dynamic loading will decide whether to load the class Car or
the class Jeep at runtime based on a properties file and/or other runtime

Java

14

conditions. Once the class is dynamically loaded the following method returns an
instance of the loaded class. It’s just like creating a class object with no
arguments.

class.newInstance (); //A non-static method, which creates an instance of a
class (i.e. creates an object).

Jeep myJeep = null ;
//myClassName should be read from a properties file or Constants interface.
//stay away from hard coding values in your program. CO
String myClassName = "au.com.Jeep" ;
Class vehicleClass = Class.forName(myClassName) ;
myJeep = (Jeep) vehicleClass.newInstance();
myJeep.setFuelCapacity(50);

A NoClassDefFoundException is
thrown if a class is referenced with
Java’s “new” operator (i.e. static loading)
but the runtime system cannot find the
referenced class.

A ClassNotFoundException is thrown when an application tries to load in a
class through its string name using the following methods but no definition for the
class with the specified name could be found:

 The forName(..) method in class - Class.
 The findSystemClass(..) method in class - ClassLoader.
 The loadClass(..) method in class - ClassLoader.

What are “static initializers” or “static blocks with no function names”? When a class is loaded, all blocks
that are declared static and don’t have function name (i.e. static initializers) are executed even before the
constructors are executed. As the name suggests they are typically used to initialize static fields. CO

public class StaticInitilaizer {
 public static final int A = 5;
 public static final int B;

 //Static initializer block, which is executed only once when the class is loaded.

 static {
 if(A == 5)
 B = 10;
 else
 B = 5;
 }

 public StaticInitilaizer(){} // constructor is called only after static initializer block
}

The following code gives an Output of A=5, B=10.

public class Test {
 System.out.println("A =" + StaticInitilaizer.A + ", B =" + StaticInitilaizer.B);
}

Q 05: What are the advantages of Object Oriented Programming Languages (OOPL)? DC
A 05: The Object Oriented Programming Languages directly represent the real life objects like Car, Jeep, Account,

Customer etc. The features of the OO programming languages like polymorphism, inheritance and
encapsulation make it powerful. [Tip: remember pie which, stands for Polymorphism, Inheritance and
Encapsulation are the 3 pillars of OOPL]

Q 06: How does the Object Oriented approach improve software development? DC
A 06: The key benefits are:

 Re-use of previous work: using implementation inheritance and object composition.

 Real mapping to the problem domain: Objects map to real world and represent vehicles, customers,
products etc: with encapsulation.

 Modular Architecture: Objects, systems, frameworks etc are the building blocks of larger systems.

Java

15

The increased quality and reduced development time are the by-products of the key benefits discussed above.
If 90% of the new application consists of proven existing components then only the remaining 10% of the code
have to be tested from scratch.

Q 07: How do you express an ‘is a’ relationship and a ‘has a’ relationship or explain inheritance and composition? What

is the difference between composition and aggregation? DC
A 07: The ‘is a’ relationship is expressed with inheritance and ‘has a’ relationship is expressed with composition. Both

inheritance and composition allow you to place sub-objects inside your new class. Two of the main techniques for
code reuse are class inheritance and object composition.

Inheritance [is a] Vs Composition [has a]

Building

Bathroom
House

class Building{

}

class House extends Building{

}

is a [House is a Building]

class House {
 Bathroom room = new Bathroom() ;

 public void getTotMirrors(){
 room.getNoMirrors();

 }
}

has a [House has a Bathroom]is a

has a

Inheritance is uni-directional. For example House is a Building. But Building is not a House. Inheritance uses
extends key word. Composition: is used when House has a Bathroom. It is incorrect to say House is a
Bathroom. Composition simply means using instance variables that refer to other objects. The class House will
have an instance variable, which refers to a Bathroom object.

Which one to use? The guide is that inheritance should be only used when subclass ‘is a’ superclass.

 Don’t use inheritance just to get code reuse. If there is no ‘is a’ relationship then use composition for code

reuse. Overuse of implementation inheritance (uses the “extends” key word) can break all the subclasses, if
the superclass is modified.

 Do not use inheritance just to get polymorphism. If there is no ‘is a’ relationship and all you want is

polymorphism then use interface inheritance with composition, which gives you code reuse (Refer Q8 in
Java section for interface inheritance).

What is the difference between aggregation and composition?

Aggregation Composition
Aggregation is an association in which one class
belongs to a collection. This is a part of a whole
relationship where a part can exist without a whole.
For example a line item is a whole and product is a
part. If a line item is deleted then corresponding
product need not be deleted. So aggregation has a
weaker relationship.

Composition is an association in which one class belongs to a
collection. This is a part of a whole relationship where a part
cannot exist without a whole. If a whole is deleted then all parts are
deleted. For example An order is a whole and line items are parts.
If an order deleted then all corresponding line items for that order
should be deleted. So composition has a stronger relationship.

Q 08: What do you mean by polymorphism, inheritance, encapsulation, and dynamic binding? DC
A 08: Polymorphism – means the ability of a single variable of a given type to be used to reference objects of different

types, and automatically call the method that is specific to the type of object the variable references. In a nutshell,
polymorphism is a bottom-up method call. The benefit of polymorphism is that it is very easy to add new classes
of derived objects without breaking the calling code (i.e. getTotArea() in the sample code shown below) that
uses the polymorphic classes or interfaces. When you send a message to an object even though you don’t know
what specific type it is, and the right thing happens, that’s called polymorphism. The process used by object-
oriented programming languages to implement polymorphism is called dynamic binding. Let us look at some
sample code to demonstrate polymorphism: CO

Java

16

+area() : double

<<abstract>>
Shape

+area() : double

Circle

+area() : double

HalfCircle

+area() : double

Square

//client or calling code
double dim = 5.0; //ie 5 meters radius or width
List listShapes = new ArrayList(20);

Shape s = new Circle();
 listShapes.add(s); //add circle

s = new Square();
listShapes.add(s); //add square

getTotArea (listShapes,dim); //returns 78.5+25.0=103.5

//Later on, if you decide to add a half circle then define
//a HalfCircle class, which extends Circle and then provide an
//area(). method but your called method getTotArea(...) remains
//same.

s = new HalfCircle();
listShapes.add(s); //add HalfCircle

getTotArea (listShapes,dim); //returns 78.5+25.0+39.25=142.75

/** called method: method which adds up areas of various
** shapes supplied to it.
**/
public double getTotArea(List listShapes, double dim){
 Iterator it = listShapes.iterator();
 double totalArea = 0.0;
 //loop through different shapes
 while(it.hasNext()) {
 Shape s = (Shape) it.next();
 totalArea += s.area(dim); //polymorphic method call
 }
 return totalArea ;
}

Sample code:

For example: given a base
class/interface Shape,
polymorphism allows the
programmer to define
different area(double
dim1) methods for any
number of derived classes
such as Circle, Square etc.
No matter what shape an
object is, applying the area
method to it will return the
right results.

Later on HalfCicle can be
added without breaking
your called code i.e.
method getTotalArea(...)

Depending on what the
shape is, appropriate
area(double dim) method
gets called and calculated.

Circle area is 78.5sqm
Square area is 25sqm
HalfCircle area is 39.25
sqm

+area() : double

Circle

+area() : double

HalfCircle

+area() : double

Square

+area() : double

«interface»
Shape

Inheritance – is the inclusion of behaviour (i.e. methods) and state (i.e. variables) of a base class in a derived
class so that they are accessible in that derived class. The key benefit of Inheritance is that it provides the formal
mechanism for code reuse. Any shared piece of business logic can be moved from the derived class into the
base class as part of refactoring process to improve maintainability of your code by avoiding code duplication. The
existing class is called the superclass and the derived class is called the subclass. Inheritance can also be
defined as the process whereby one object acquires characteristics from one or more other objects the same way
children acquire characteristics from their parents.

There are two types of inheritances:

1. Implementation inheritance (aka class inheritance): You can extend an applications’ functionality by reusing
functionality in the parent class by inheriting all or some of the operations already implemented. In Java, you can
only inherit from one superclass. Implementation inheritance promotes reusability but improper use of class
inheritance can cause programming nightmares by breaking encapsulation and making future changes a problem.
With implementation inheritance, the subclass becomes tightly coupled with the superclass. This will make the
design fragile because if you want to change the superclass, you must know all the details of the subclasses to
avoid breaking them. So when using implementation inheritance, make sure that the subclasses depend only
on the behaviour of the superclass, not on the actual implementation. For example in the above diagram the
subclasses should only be concerned about the behaviour known as area() but not how it is implemented.

2. Interface inheritance (aka type inheritance): This is also known as subtyping. Interfaces provide a mechanism
for specifying a relationship between otherwise unrelated classes, typically by specifying a set of common
methods each implementing class must contain. Interface inheritance promotes the design concept of program to
interfaces not to implementations. This also reduces the coupling or implementation dependencies between
systems. In Java, you can implement any number of interfaces. This is more flexible than implementation
inheritance because it won’t lock you into specific implementations which make subclasses difficult to maintain. So
care should be taken not to break the implementing classes by modifying the interfaces.

Which one to use? Prefer interface inheritance to implementation inheritance because it promotes the design
concept of coding to an interface and reduces coupling. Interface inheritance can achieve code reuse with the
help of object composition. If you look at Gang of Four (GoF) design patterns, you can see that it favours
interface inheritance to implementation inheritance. CO

Java

17

Implementation inheritance Interface inheritance
Let’s assume that savings account and term deposit
account have a similar behaviour in terms of depositing
and withdrawing money, so we will get the super class to
implement this behaviour and get the subclasses to reuse
this behaviour. But saving account and term deposit
account have specific behaviour in calculating the interest.

public abstract class Account {

 public void deposit(double amount) {
 //deposit logic
 }

 public void withdraw(double amount) {
 //withdraw logic
 }

 public abstract double calculateInterest(double amount);

}

public class SavingsAccount extends Account {

 public double calculateInterest(double amount) {
 //calculate interest for SavingsAccount
 }
}

public class TermDepositAccount extends Account {

 public double calculateInterest(double amount) {
 //calculate interest for TermDeposit
 }
 }

The calling code can be defined as follows for illustration
purpose only:

public class Test {
 public static void main(String[] args) {
 Account acc1 = new SavingsAccount();
 acc1.deposit(5.0);
 acc1.withdraw(2.0);

 Account acc2 = new TermDepositAccount();
 acc2.deposit(10.0);
 acc2.withdraw(3.0);

 acc1.calculateInterest(500.00);
 acc2.calculateInterest(500.00);
 }
}

Let’s look at an interface inheritance code sample, which makes
use of composition for reusability. In the following example the
methods deposit(…) and withdraw(…) share the same piece of code
in AccountHelper class. The method calculateInterest(…) has its
specific implementation in its own class.

public interface Account {
 public abstract void deposit(double amount);
 public abstract void withdraw(double amount);
 public abstract int getAccountType();
}

public interface SavingsAccount extends Account{
 public abstract double calculateInterest(double amount);
}

public interface TermDepositAccount extends Account{
 public abstract double calculateInterest(double amount);
}

The classes SavingsAccountImpl, TermDepositAccountImpl
should implement the methods declared in its interfaces. The class
AccountHelper implements the methods deposit(…) and
withdraw(…)

public class SavingsAccountImpl implements SavingsAccount{
 private int accountType = 1;

 //helper class which promotes code reuse through composition
 AccountHelper helper = new AccountHelper();

 public void deposit(double amount) {
 helper.deposit(amount, getAccountType());
 }
 public void withdraw(double amount) {
 helper.withdraw(amount, getAccountType());
 }
 public double calculateInterest(double amount) {
 //calculate interest for SavingsAccount
 }
 public int getAccountType(){
 return accountType;
 }
}

public class TermDepositAccountImpl implements
 TermDepositAccount {
 private int accountType = 2;

 //helper class which promotes code reuse through composition
 AccountHelper helper = new AccountHelper();

 public void deposit(double amount) {
 helper.deposit(amount, getAccountType());
 }
 public void withdraw(double amount) {
 helper.withdraw(amount, getAccountType());
 }
 public double calculateInterest(double amount) {
 //calculate interest for TermDeposit
 }
 public int getAccountType() {
 return accountType;
 }
}

The calling code can be defined as follows for illustration purpose
only:

public class Test {
 public static void main(String[] args) {

Java

18

 Account acc1 = new SavingsAccountImpl();
 acc1.deposit(5.0);

 Account acc2 = new TermDepositAccountImpl();
 acc2.deposit(10.0);

 if (acc1.getAccountType() == 1) {
 ((SavingsAccount) acc1).calculateInterest(500.00);
 }

 if (acc2.getAccountType() == 2) {
 ((TermDepositAccount) acc2).calculateInterest(500.00);
 }
 }
}

Encapsulation – refers to keeping all the related members (variables and methods) together in an object.
Specifying members as private can hide the variables and methods. Objects should hide their inner workings from
the outside view. Good encapsulation improves code modularity by preventing objects interacting with
each other in an unexpected way, which in turn makes future development and refactoring efforts easy.

Being able to encapsulate members of a class is important for security and integrity. We can protect variables
from unacceptable values. The sample code below describes how encapsulation can be used to protect the
MyMarks object from having negative values. Any modification to member variable “vmarks” can only be carried
out through the setter method setMarks(int mark). This prevents the object “MyMarks” from having any negative
values by throwing an exception. CO

setName (String name)
Strin

g g
etN

am
e()

int getMarks()
se

tM
ark

s(i
nt

mark
)

private int vmarks;
private String name;

Member
variables are
encapsulated,
so that they
can only be
accessed via
encapsulating
methods.

Class MyMarks {
 private int vmarks = 0;
 private String name;

 public void setMarks(int mark)
 throws MarkException {
 if(mark > 0)
 this.vmarks = mark;
 else {
 throw new MarkException("No negative
 Values");
 }
 }

 public int getMarks(){
 return vmarks;
 }
 //getters and setters for attribute name goes here.
}

Sample code

Q 09: What is design by contract? Explain the assertion construct? DC
A 09: Design by contract specifies the obligations of a calling-method and called-method to each other. Design by

contract is a valuable technique, which should be used to build well-defined interfaces. The strength of this
programming methodology is that it gets the programmer to think clearly about what a function does, what pre
and post conditions it must adhere to and also it provides documentation for the caller. Java uses the assert
statement to implement pre- and post-conditions. Java’s exceptions handling also support design by contract
especially checked exceptions (Refer Q34 in Java section for checked exceptions). In design by contract in
addition to specifying programming code to carrying out intended operations of a method the programmer also
specifies:

1. Preconditions – This is the part of the contract the calling-method must agree to. Preconditions specify the
conditions that must be true before a called method can execute. Preconditions involve the system state and the
arguments passed into the method at the time of its invocation. If a precondition fails then there is a bug in the
calling-method or calling software component.

Java

19

On public methods On non-public methods
Preconditions on public methods are enforced by explicit checks
that throw particular, specified exceptions. You should not use
assertion to check the parameters of the public methods but
can use for the non-public methods. Assert is inappropriate
because the method guarantees that it will always enforce the
argument checks. It must check its arguments whether or not
assertions are enabled. Further, assert construct does not throw
an exception of a specified type. It can throw only an
AssertionError.

public void setRate(int rate) {
 if(rate <= 0 || rate > MAX_RATE){
 throw new IllegalArgumentException(“Invalid rate ” + rate);
 }
 setCalculatedRate(rate);
}

You can use assertion to check the parameters of the
non-public methods.

private void setCalculatedRate(int rate) {
 assert (rate > 0 && rate < MAX_RATE) : rate;
 //calculate the rate and set it.
}

Assertions can be disabled, so programs must not
assume that assert construct will be always executed:

//Wrong: if assertion is disabled, CarpenterJob never
//Get removed
assert jobsAd.remove(PilotJob);

//Correct:
boolean pilotJobRemoved = jobsAd.remove(PilotJob);
assert pilotJobRemoved;

2. Postconditions – This is the part of the contract the called-method agrees to. What must be true after a
method completes successfully. Postconditions can be used with assertions in both public and non-public
methods. The postconditions involve the old system state, the new system state, the method arguments and the
method’s return value. If a postcondition fails then there is a bug in the called-method or called software
component.

public double calcRate(int rate) {
 if(rate <= 0 || rate > MAX_RATE){
 throw new IllegalArgumentException(“Invalid rate !!! ”);
 }

 //logic to calculate the rate and set it goes here

 assert this.evaluate(result) < 0 : this; //this message sent to AssertionError on failure
 return result;
 }

3. Class invariants - what must be true about each instance of a class? A class invariant as an internal invariant
that can specify the relationships among multiple attributes, and should be true before and after any method
completes. If an invariant fails then there could be a bug in either calling-method or called-method. There is
no particular mechanism for checking invariants but it is convenient to combine all the expressions required for
checking invariants into a single internal method that can be called by assertions. For example if you have a class,
which deals with negative integers then you define the isNegative() convenient internal method:

class NegativeInteger {
 Integer value = new Integer (-1); //invariant

 //constructor
 public NegativeInteger(Integer int) {
 //constructor logic goes here
 assert isNegative();
 }

 //rest of the public and non-public methods goes here. public methods should call assert isNegative(); prior to its return

 //convenient internal method for checking invariants. Returns true if the integer value is negative
 private boolean isNegative(){
 return value.intValue() < 0 ;
 }
}

The isNegative() method should be true before and after any method completes, each public method and
constructor should contain the following assert statement immediately prior to its return.

assert isNegative();

Explain the assertion construct? The assertion statements have two forms as shown below:

assert Expression1;

Java

20

assert Expression1 : Expression2;

Where:

 Expression1 is a boolean expression. If the Expression1 evaluates to false, it throws an AssertionError without any

detailed message.
 Expression2 if the Expression1 evaluates to false throws an AssertionError with using the value of the Expression2 as

the errors’ detailed message.

Note: If you are using assertions (available from JDK1.4 onwards), you should supply the JVM argument to
enable it by package name or class name.

Java -ea[:packagename...|:classname] or Java -enableassertions[:packagename...|:classname]
Java –ea:Account

Q 10: What is the difference between an abstract class and an interface and when should you use them? LF DP DC
A 10: In design, you want the base class to present only an interface for its derived classes. This means, you don’t want

anyone to actually instantiate an object of the base class. You only want to upcast to it (implicit upcasting, which
gives you polymorphic behaviour), so that its interface can be used. This is accomplished by making that class
abstract using the abstract keyword. If anyone tries to make an object of an abstract class, the compiler prevents
it.

The interface keyword takes this concept of an abstract class a step further by preventing any method or function
implementation at all. You can only declare a method or function but not provide the implementation. The class,
which is implementing the interface, should provide the actual implementation. The interface is a very useful and
commonly used aspect in OO design, as it provides the separation of interface and implementation and
enables you to:

 Capture similarities among unrelated classes without artificially forcing a class relationship.
 Declare methods that one or more classes are expected to implement.
 Reveal an object's programming interface without revealing its actual implementation.
 Model multiple interface inheritance in Java, which provides some of the benefits of full on multiple

inheritances, a feature that some object-oriented languages support that allow a class to have more than one
superclass.

Shape

Circle Square

CircleOnSquare

Diamond problem & use of interface

No multiple inheritance in JAVA

Circle Square CircleOnSquare

<<Interface>>
ShapeIF

<<Interface>>
CircleIF

<<Interface>>
SquareIF

Multiple interface inheritance in JAVA

Abstract class Interface
Have executable methods and abstract methods. Have no implementation code. All methods are abstract.

Can only subclass one abstract class.

A class can implement any number of interfaces.

Can have instance variables, constructors and any
visibility: public, private, protected, none (aka package).

Cannot have instance variables, constructors and can have
only public and none (aka package) visibility.

When to use an abstract class?: In case where you want to use implementation inheritance then it is usually
provided by an abstract base class. Abstract classes are excellent candidates inside of application frameworks.
Abstract classes let you define some default behaviour and force subclasses to provide any specific behaviour.
Care should be taken not to overuse implementation inheritance as discussed in Q8 in Java section.

Java

21

When to use an interface?: For polymorphic interface inheritance, where the client wants to only deal with a type
and does not care about the actual implementation use interfaces. If you need to change your design frequently,
you should prefer using interface to abstract. CO Coding to an interface reduces coupling and interface
inheritance can achieve code reuse with the help of object composition. Another justification for using interfaces
is that they solve the ‘diamond problem’ of traditional multiple inheritance as shown in the figure. Java does not
support multiple inheritances. Java only supports multiple interface inheritance. Interface will solve all the
ambiguities caused by this ‘diamond problem’.

Design pattern: Strategy design pattern lets you swap new algorithms and processes into your program without
altering the objects that use them. Strategy design pattern: Refer Q11 in How would you go about… section.

Q 11: Why there are some interfaces with no defined methods (i.e. marker interfaces) in Java? LF
A 11: The interfaces with no defined methods act like markers. They just tell the compiler that the objects of the classes

implementing the interfaces with no defined methods need to be treated differently. Example Serializable (Refer
Q19 in Java section), Cloneable etc

Q 12: When is a method said to be overloaded and when is a method said to be overridden? LF CO
A 12:

Method Overloading Method Overriding
Overloading deals with multiple methods in the same class
with the same name but different method signatures.

class MyClass {
 public void getInvestAmount(int rate) {…}

 public void getInvestAmount(int rate, long principal)
 { … }
}

Both the above methods have the same method names
but different method signatures, which mean the methods
are overloaded.

Overriding deals with two methods, one in the parent class and
the other one in the child class and has the same name and
signatures.

class BaseClass{
 public void getInvestAmount(int rate) {…}
}

class MyClass extends BaseClass {
 public void getInvestAmount(int rate) { …}
}

Both the above methods have the same method names and
the signatures but the method in the subclass MyClass
overrides the method in the superclass BaseClass.

Overloading lets you define the same operation in
different ways for different data.

Overriding lets you define the same operation in different
ways for different object types.

Q 13: What is the main difference between an ArrayList and a Vector? What is the main difference between Hashmap

and Hashtable? LF DC PI CI
A 13:

Vector / Hashtable ArrayList / Hashmap
Original classes before the introduction of Collections
API. Vector & Hashtable are synchronized. Any
method that touches their contents is thread-safe.

So if you don’t need a thread safe collection, use the ArrayList or
Hashmap. Why pay the price of synchronization unnecessarily at
the expense of performance degradation.

So which is better? As a general rule, prefer ArrayList/Hashmap to Vector/Hashtable. If your application is a
multithreaded application and at least one of the threads either adds or deletes an entry into the collection
then use new Java collection API‘s external synchronization facility as shown below to temporarily synchronize
your collections as needed: CO

Map myMap = Collections.synchronizedMap (myMap);
List myList = Collections.synchronizedList (myList);

Java arrays are even faster than using an ArrayList/Vector and perhaps therefore may be preferable.
ArrayList/Vector internally uses an array with some convenient methods like add(..), remove(…) etc.

Q 14: Explain the Java Collection framework? LF DP

Java

22

A 14: The key interfaces used by the collection framework are List, Set and Map. The List and Set extends the
Collection interface. Should not confuse the Collection interface with the Collections class which is a utility class.

A Set is a collection with unique elements and prevents duplication within the collection. HashSet and TreeSet
are implementations of a Set interface. A List is a collection with an ordered sequence of elements and may
contain duplicates. ArrayList, LinkedList and Vector are implementations of a List interface.

The Collection API also supports maps, but within a hierarchy distinct from the Collection interface. A Map is an
object that maps keys to values, where the list of keys is itself a collection object. A map can contain duplicate
values, but the keys in a map must be distinct. HashMap, TreeMap and Hashtable are implementations of a Map
interface.

How to implement collection ordering? SortedSet and SortedMap interfaces maintain sorted order. The
classes, which implement the Comparable interface, impose natural order. For classes that don’t implement
comparable interface, or when one needs even more control over ordering based on multiple attributes, a
Comparator interface should be used.

Design pattern: What is an Iterator? An Iterator is a use once object to access the objects stored in a collection.
Iterator design pattern (aka Cursor) is used, which is a behavioural design pattern that provides a way to access
elements of a collection sequentially without exposing its internal representation.

JAVA collection framework

ex tends

ArrayList

AbstractCollection

AbstractList

AbstractS et

AbstractMap

Abstract
S equential

L ist

LinkedList

V ector

TreeS et

HashS et

TreeMap

HashMap

< interface>
S ortedMap< interface>

S ortedS et

Linked
HashS et

< interface>
Collection

W eak
HashMap

< interface>
List < interface>

S et

< interface>
Map

< interface>
Random

Acess

Linked
HashMap

Identity
HashMap

< interface>
Com parator

Arrays

implements

S tack

asList

java.util.Collections

(Diagram sourced from: http://www.wilsonmar.com/1arrays.htm)

What are the benefits of the Java collection framework? Collection framework provides flexibility,
performance, and robustness.

 Polymorphic algorithms – sorting, shuffling, reversing, binary search etc.
 Set algebra - such as finding subsets, intersections, and unions between objects.
 Performance - collections have much better performance compared to the older Vector and Hashtable

classes with the elimination of synchronization overheads.
 Thread-safety - when synchronization is required, wrapper implementations are provided for temporarily

synchronizing existing collection objects.
 Immutability - when immutability is required wrapper implementations are provided for making a collection

immutable.
 Extensibility - interfaces and abstract classes provide an excellent starting point for adding functionality and

features to create specialized object collections.

Q 15: What are some of the best practices relating to Java collection? BP PI CI
A 15:

 Use ArrayLists, HashMap etc as opposed to Vector, Hashtable etc, where possible to avoid any
synchronization overhead. Even better is to use just arrays where possible. If multiple threads concurrently
access a collection and at least one of the threads either adds or deletes an entry into the collection,
then the collection must be externally synchronized. This is achieved by:

Map myMap = Collections.synchronizedMap (myMap);

Java

23

List myList = Collections.synchronizedList (myList);

 Set the initial capacity of a collection appropriately (e.g. ArrayList, HashMap etc). This is because collection

classes like ArrayList, HashMap etc must grow periodically to accommodate new elements. But if you have a
very large array, and you know the size in advance then you can speed things up by setting the initial size
appropriately.

For example: HashMaps/Hashtables need to be created with sufficiently large capacity to minimise
rehashing (which happens every time the table grows). HashMap has two parameters initial capacity and
load factor that affect its performance and space requirements. Higher load factor values (default load factor
of 0.75 provides a good trade off between performance and space) will reduce the space cost but will
increase the lookup cost of myMap.get(…) and myMap.put(…) methods. When the number of entries in the
HashMap exceeds the current capacity * loadfactor then the capacity of the HasMap is roughly doubled by
calling the rehash function. It is also very important not to set the initial capacity too high or load factor too
low if iteration performance or reduction in space is important.

 Program in terms of interface not implementation: For example you might decide a LinkedList is the best
choice for some application, but then later decide ArrayList might be a better choice for performance reason.
CO

Use:
 List list = new ArrayList(100); //program in terms of interface & set the initial capacity.
Instead of:
 ArrayList list = new ArrayList();

 Avoid storing unrelated or different types of objects into same collection: This is analogous to storing
items in pigeonholes without any labelling. To store items use value objects or data objects (as oppose to
storing every attribute in an ArrayList or HashMap). Provide wrapper classes around your collection API
classes like ArrayList, Hashmap etc as shown in better approach column. Also where applicable consider
using composite design pattern, where an object may represent a single object or a collection of objects.
Refer Q52 in Java section for UML diagram of a composite design pattern. CO

Avoid where possible Better approach
The code below is hard to maintain and understand by
others. Also gets more complicated as the requirements
grow in the future because we are throwing different
types of objects like Integer, String etc into a list just
based on the indices and it is easy to make mistakes
while casting the objects back during retrieval.

List myOrder = new ArrayList()

ResultSet rs = …

While (rs.hasNext()) {

 List lineItem = new ArrayList();

 lineItem.add (new Integer(rs.getInt(“itemId”)));
 lineItem.add (rs.getString(“description”));
 ….
 myOrder.add(lineItem);
}

return myOrder;

Example 2:

List myOrder = new ArrayList(10);

//create an order
OrderVO header = new OrderVO();
header.setOrderId(1001);
…
//add all the line items
LineItemVO line1 = new LineItemVO();
line1.setLineItemId(1);
LineItemVO line2 = new LineItemVO();
Line2.setLineItemId(2);

When storing items into a collection define value objects as shown
below: (VO is an acronym for Value Object).

public class LineItemVO {
 private int itemId;
 private String productName;

 public int getLineItemId(){return accountId ;}
 public int getAccountName(){return accountName;}

 public void setLineItemId(int accountId){
 this.accountId = accountId
 }
 //implement other getter & setter methods
}

Now let’s define our base wrapper class, which represents an order:

public abstract class Order {
 int orderId;
 List lineItems = null;

 public abstract int countLineItems();
 public abstract boolean add(LineItemVO itemToAdd);
 public abstract boolean remove(LineItemVO itemToAdd);
 public abstract Iterator getIterator();
 public int getOrderId(){return this.orderId; }
}

Now a specific implementation of our wrapper class:

public class OverseasOrder extends Order {
 public OverseasOrder(int inOrderId) {
 this.lineItems = new ArrayList(10);
 this.orderId = inOrderId;
 }

Java

24

List lineItems = new ArrayList();
lineItems.add(line1);
lineItems.add(line2);

//to store objects
myOrder.add(order);// index 0 is an OrderVO object
myOrder.add(lineItems);//index 1 is a List of line items

//to retrieve objects
myOrder.get(0);
myOrder.get(1);

Above approaches are bad because disparate objects
are stored in the lineItem collection in example-1 and
example-2 relies on indices to store disparate objects.
The indices based approach and storing disparate
objects are hard to maintain and understand because
indices are hard coded and get scattered across the
code. If an index position changes for some reason, then
you will have to change every occurrence, otherwise it
breaks your application.

The above coding approaches are analogous to storing
disparate items in a storage system without proper
labelling and just relying on its grid position.

 public int countLineItems() { //logic to count }

 public boolean add(LineItemVO itemToAdd){
 …//additional logic or checks
 return lineItems.add(itemToAdd);
 }

 public boolean remove(LineItemVO itemToAdd){
 return lineItems.remove(itemToAdd);
 }

 public ListIterator getIterator(){ return lineItems.Iterator();}
}

Now to use:

Order myOrder = new OverseasOrder(1234) ;

LineItemVO item1 = new LineItemVO();
Item1.setItemId(1);
Item1.setProductName(“BBQ”);

LineItemVO item2 = new LineItemVO();
Item1.setItemId(2);
Item1.setProductName(“Outdoor chair”);

//to add line items to order
myOrder.add(item1);
myOrder.add(item2);
…

Q 16: When providing a user defined key class for storing objects in the Hashmaps or Hashtables, what methods do you

have to provide or override (i.e. method overriding)? LF PI CO
A 16: You should override the equals() and hashCode() methods from the Object class. The default implementation of

the equals() and hashcode(), which are inherited from the java.lang.Object uses an object instance’s memory
location (e.g. MyObject@6c60f2ea). This can cause problems when two instances of the car objects have the
same colour but the inherited equals() will return false because it uses the memory location, which is different for
the two instances. Also the toString() method can be overridden to provide a proper string representation of your
object. Points to consider:

• If a class overrides equals(), it must override hashCode().
• If 2 objects are equal, then their hashCode values must be equal as well.
• If a field is not used in equals(), then it must not be used in hashCode().
• If it is accessed often, hashCode() is a candidate for caching to enhance performance.

Note: Java 1.5 introduces enumerated constants, which improves readability and maintainability of your code.
Java programming language enums are more powerful than their counterparts in other languages. E.g. A class
like Weather can be built on top of simple enum type Season and the class Weather can be made immutable, and
only one instance of each Weather can be created, so that your Weather class does not have to override
equals() and hashCode() methods.

public class Weather {
 public enum Season {WINTER, SPRING, SUMMER, FALL}
 private final Season season;
 private static final List<Weather> listWeather = new ArrayList<Weather> ();

 private Weather (Season season) { this.season = season;}
 public Season getSeason () { return season;}

 static {
 for (Season season : Season.values()) {
 listWeather.add(new Weather(season));
 }
 }

 public static ArrayList<Weather> getWeatherList () { return listWeather; }
 public String toString(){ return season;} // takes advantage of toString() method of Season.
}

Java

25

Q 17: What is the main difference between a String and a StringBuffer class? LF PI CI CO
A 17:

String StringBuffer / StringBuilder
String is immutable: you can’t modify a string
object but can replace it by creating a new
instance. Creating a new instance is rather
expensive.

//Inefficient version using immutable String
String output = “Some text”
Int count = 100;
for(int I =0; i<count; i++) {
 output += i;
}
return output;

The above code would build 99 new String
objects, of which 98 would be thrown away
immediately. Creating new objects is not
efficient.

StringBuffer is mutable: use StringBuffer or StringBuilder when you want to
modify the contents. StringBuilder was added in Java 5 and it is identical in
all respects to StringBuffer except that it is not synchronised, which makes
it slightly faster at the cost of not being thread-safe.

//More efficient version using mutable StringBuffer
StringBuffer output = new StringBuffer(110);
Output.append(“Some text”);
for(int I =0; i<count; i++) {
 output.append(i);
}

return output.toString();

The above code creates only two new objects, the StringBuffer and the final
String that is returned. StringBuffer expands as needed, which is costly
however, so it would be better to initilise the StringBuffer with the correct size
from the start as shown.

Another important point is that creation of extra strings is not limited to ‘overloaded mathematical operators’ (“+”) but
there are several methods like concat(), trim(), substring(), and replace() in String classes that generate new
string instances. So use StringBuffer or StringBuilder for computation intensive operations, which offer better
performance.

Q 18: What is the main difference between pass-by-reference and pass-by-value? LF PI
A 18: Other languages use pass-by-reference or pass-by-pointer. But in Java no matter what type of argument you

pass the corresponding parameter (primitive variable or object reference) will get a copy of that data, which is
exactly how pass-by-value (i.e. copy-by-value) works.

In Java, if a calling method passes a reference of an object as an argument to the called method then the passed-
in reference gets copied first and then passed to the called method. Both the original reference that was
passed-in and the copied reference will be pointing to the same object. So no matter which reference you use, you
will be always modifying the same original object, which is how the pass-by-reference works as well.

re f d

P ass-by-value for p rim itive variab les vs O bject references

public vo id firs t(){
 in t i= 10;
 in t x = second(i);
 //A t th is po in t
 //va lue of i is s till 10
 //va lue o f x is 11
}
pub lic in t second(in t k) {
 k++;
 re turn k ;
}

i = 10

k = 10

k = 11

C opy o f i

sto res i

copies i

acts on k

ref
pub lic vo id firs t(){
 C ar c = new C ar("red")
 //A t th is po in t
 //co lor is R ed
 second(c);
 //A t th is po in t
 //co lor is B lue
}
pub lic vo id second(C ar d)
{
 d .setC olor(b lue);
 //co lor is b lue
}

C ar ob ject

S tring co lo r = red

re f c

co
py

 o
f c

P rim itive variab les O bject references

m odifies the orig ina l
ob ject through cop ied
reference

m odifies the copy k
but no t the orig ina l.

C hanges
co lo r = b lue

If your method call involves inter-process (e.g. between two JVMs) communication, then the reference of the
calling method has a different address space to the called method sitting in a separate process (i.e. separate
JVM). Hence inter-process communication involves calling method passing objects as arguments to called method
by-value in a serialized form, which can adversely affect performance due to marshalling and unmarshalling cost.

Note: As discussed in Q69 in Enterprise section, EJB 2.x introduced local interfaces, where enterprise beans that can be used
locally within the same JVM using Java’s form of pass-by-reference, hence improving performance.

Java

26

Q 19: What is serialization? How would you exclude a field of a class from serialization or what is a transient variable?
What is the common use? LF SI PI

A 19: Serialization is a process of reading or writing an object. It is a process of saving an object’s state to a sequence of
bytes, as well as a process of rebuilding those bytes back into a live object at some future time. An object is
marked serializable by implementing the java.io.Serializable interface, which is only a marker interface -- it simply
allows the serialization mechanism to verify that the class can be persisted, typically to a file.

byte stream
write to

Serialization

File
 class Car implements Serializable {
 String color = null;
 transient File fh = null;
 }

Car Object1

 Class Car implements
Serializable {

 String color = null;
 }

Car Object 2

deserialize
serialize

deserialize

Transient variables cannot be serialized. The fields marked transient in a serializable object will not be
transmitted in the byte stream. An example would be a file handle or a database connection. Such objects are only
meaningful locally. So they should be marked as transient in a serializable class.

Serialization can adversely affect performance since it:

 Depends on reflection.
 Has an incredibly verbose data format.
 Is very easy to send surplus data.

When to use serialization? Do not use serialization if you do not have to. A common use of serialization is to use
it to send an object over the network or if the state of an object needs to be persisted to a flat file or a database.
(Refer Q57 on Enterprise section). Deep cloning or copy can be achieved through serialization. This may be fast
to code but will have performance implications (Refer Q22 in Java section).

The objects stored in an HTTP session should be serializable to support in-memory replication of sessions to
achieve scalability (Refer Q20 in Enterprise section). Objects are passed in RMI (Remote Method Invocation)
across network using serialization (Refer Q57 in Enterprise section).

Q 20: Explain the Java I/O streaming concept and the use of the decorator design pattern in Java I/O? LF DP PI SI
A 20: Java input and output is defined in terms of an abstract concept called a “stream”, which is a sequence of data.

There are 2 kinds of streams.

 Byte streams (8 bit bytes) Abstract classes are: InputStream and OutputStream
 Character streams (16 bit UNICODE) Abstract classes are: Reader and Writer

Design pattern: java.io.* classes use the decorator design pattern. The decorator design pattern attaches
responsibilities to objects at runtime. Decorators are more flexible than inheritance because the inheritance
attaches responsibility to classes at compile time. The java.io.* classes use the decorator pattern to construct
different combinations of behaviour at runtime based on some basic classes.

Attaching responsibilities to classes at
compile time using subclassing.

Attaching responsibilities to objects at runtime using a decorator
design pattern.

Inheritance (aka subclassing) attaches
responsibilities to classes at compile time.
When you extend a class, each individual
changes you make to child class will affect all
instances of the child classes. Defining many
classes using inheritance to have all possible
combinations is problematic and inflexible.

By attaching responsibilities to objects at runtime, you can apply changes
to each individual object you want to change.

File file = new File(“c:/temp”);
FileInputStream fis = new FileInputStream(file);
BufferedInputStream bis = new BufferedInputStream(fis);

Decorators decorate an object by enhancing or restricting functionality of an
object it decorates. The decorators add or restrict functionality to decorated

Java

27

objects either before or after forwarding the request. At runtime the
BufferedInputStream (bis), which is a decorator (aka a wrapper around
decorated object), forwards the method call to its decorated object
FileInputStream (fis). The ‘bis’ will apply the additional functionality of
buffering around the lower level file (i.e. fis) I/O.

java.lang.Object

java.io.InputStream java.io.Readerjava.io.OutputStream java.io.Writer

java.io.BefferedReader java.io.InputStreamReader

java.io.FileReader

java.io.OutputStreamWriterr

java.io.FileWriter

java.io.FileInputStream java.io.FileoutputStream

java.lang.System

java.io.* class hierachy

Note: Only a few sub classes of abstract classes
like InputStream are shown for clarity.

The New I/O (NIO): more scalable and better performance

Java has long been not suited for developing programs that perform a lot of I/O operations. Furthermore,
commonly needed tasks such as file locking, non-blocking and asynchronous I/O operations and ability to map file
to memory were not available. Non-blocking I/O operations were achieved through work around such as
multithreading or using JNI. The New I/O API (aka NIO) in J2SE 1.4 has changed this situation.

A server’s ability to handle several client requests effectively depends on how it uses I/O streams. When a server
has to handle hundreds of clients simultaneously, it must be able to use I/O services concurrently. One way to
cater for this scenario in Java is to use threads but having almost one-to-one ratio of threads (100 clients will have
100 threads) is prone to enormous thread overhead and can result in performance and scalability problems
due to consumption of memory stacks and CPU context switching. To overcome this problem, a new set of
non-blocking I/O classes have been introduced to the Java platform in java.nio package. The non-blocking I/O
mechanism is built around Selectors and Channels. Channels, Buffers and Selectors are the core of the NIO.

A Channel class represents a bi-directional communication channel (similar to InputStrean and OutputStream)
between datasources such as a socket, a file, or an application component, which is capable of performing one or
more I/O operations such as reading or writing. Channels can be non-blocking, which means, no I/O operation will
wait for data to be read or written to the network. The good thing about NIO channels is that they can be
asynchronously interrupted and closed. So if a thread is blocked in an I/O operation on a channel, another thread
can interrupt that blocked thread.

Buffers hold data. Channels can fill and drain Buffers. Buffers replace the need for you to do your own buffer
management using byte arrays. There are different types of Buffers like ByteBuffer, CharBuffer, DoubleBuffer, etc.

A Selector class is responsible for multiplexing (combining multiple streams into a single stream) by allowing a
single thread to service multiple channels. Each Channel registers events with a Selector. When events arrive
from clients, the Selector demultiplexes (separating a single stream into multiple streams) them and dispatches
the events to corresponding Channels. To achieve non-blocking I/O a Channel class must work in conjunction with
a Selector class.

Design pattern: NIO uses a reactor design pattern, which demultiplexes events (separating single stream into
multiple streams) and dispatches them to registered object handlers. The reactor pattern is similar to an observer
pattern (aka publisher and subscriber design pattern), but an observer pattern handles only a single source of
events (i.e. a single publisher with multiple subscribers) where a reactor pattern handles multiple event sources
(i.e. multiple publishers with multiple subscribers). The intent of an observer pattern is to define a one-to-many
dependency so that when one object (i.e. the publisher) changes its state, all its dependents (i.e. all its
subscribers) are notified and updated correspondingly.

Another sought after functionality of NIO is its ability to map a file to memory. There is a specialized form of a
Buffer known as MappedByteBuffer, which represents a buffer of bytes mapped to a file. To map a file to

Java

28

MappedByteBuffer, you must first get a channel for a file. Once you get a channel then you map it to a buffer and
subsequently you can access it like any other ByteBuffer. Once you map an input file to a CharBuffer, you can do
pattern matching on the file contents. This is similar to running “grep” on a UNIX file system.

Another feature of NIO is its ability to lock and unlock files. Locks can be exclusive or shared and can be held on a
contiguous portion of a file. But file locks are subject to the control of the underlying operating system.

Q 21: How can you improve Java I/O performance? PI BP
A 21: Java applications that utilise Input/Output are excellent candidates for performance tuning. Profiling of Java

applications that handle significant volumes of data will show significant time spent in I/O operations. This means
substantial gains can be had from I/O performance tuning. Therefore, I/O efficiency should be a high priority for
developers looking to optimally increase performance.

The basic rules for speeding up I/O performance are

 Minimise accessing the hard disk.
 Minimise accessing the underlying operating system.
 Minimise processing bytes and characters individually.

Let us look at some of the techniques to improve I/O performance. CO

 Use buffering to minimise disk access and underlying operating system. As shown below, with buffering

large chunks of a file are read from a disk and then accessed a byte or character at a time.

W ithout buffering : inefficient code

 try{
 File f = new File("myFile.txt");
 FileInputStream fis = new FileInputStream(f);
 int count = 0;
 int b = ;
 while((b = fis.read()) != -1){
 if(b== '\n') {
 count++;
 }
 }
 // fis should be closed in a finally block.
 fis.close() ;
 }
catch(IOException io){}

Note: fis.read() is a native method call to the
underlying system.

W ith Buffering: yields better performance

try{
 File f = new File("myFile.txt");
 FileInputStream fis = new FileInputStream(f);
 BufferedInputStream bis = new BufferedInputStream(fis);
 int count = 0;
 int b = ;
 while((b = bis.read()) != -1){
 if(b== '\n') {
 count++;
 }
 }
 //bis should be closed in a finally block.
 bis.close() ;
 }
catch(IOException io){}

Note: bis.read() takes the next byte from the input buffer and only
rarely access the underlying operating system.

Instead of reading a character or a byte at a time, the above code with buffering can be improved further by
reading one line at a time as shown below:

FileReader fr = new FileReader(f);
BufferedReader br = new BufferedReader(fr);
While (br.readLine() != null) count++;

By default the System.out is line buffered, which means that the output buffer is flushed when a new line
character is encountered. This is required for any interactivity between an input prompt and display of output.
The line buffering can be disabled for faster I/O operation as follows:

FileOutputStream fos = new FileOutputStream(file);
BufferedOutputStream bos = new BufferedOutputStream(fos, 1024);
PrintStream ps = new PrintStream(bos,false);
System.setOut(ps);

while (someConditionIsTrue)

System.out.println(“blah…blah…”);
}

It is recommended to use logging frameworks like Log4J or apache commons logging, which uses
buffering instead of using default behaviour of System.out.println(…..) for better performance. Frameworks
like Log4J are configurable, flexible, extensible and easy to use.

Java

29

 Use the NIO package, if you are using JDK 1.4 or later, which uses performance-enhancing features like
buffers to hold data, memory mapping of files, non-blocking I/O operations etc.

 I/O performance can be improved by minimising the calls to the underlying operating systems. The Java
runtime itself cannot know the length of a file, querying the file system for isDirectory(), isFile(), exists() etc
must query the underlying operating system.

 Where applicable caching can be used to improve performance by reading in all the lines of a file into a Java
collection class like an ArrayList or a HashMap and subsequently access the data from an in-memory
collection instead of the disk.

Q 22: What is the main difference between shallow cloning and deep cloning of objects? DC LF MI PI
A 22: The default behaviour of an object’s clone() method automatically yields a shallow copy. So to achieve a deep

copy the classes must be edited or adjusted.

Shallow copy: If a shallow copy is performed on obj-1 as shown in fig-2 then it is copied but its contained objects
are not. The contained objects Obj-1 and Obj-2 are affected by changes to cloned Obj-2. Java supports shallow
cloning of objects by default when a class implements the java.lang.Cloneable interface.

Deep copy: If a deep copy is performed on obj-1 as shown in fig-3 then not only obj-1 has been copied but the
objects contained within it have been copied as well. Serialization can be used to achieve deep cloning. Deep
cloning through serialization is faster to develop and easier to maintain but carries a performance overhead.

F ig-2 :S hallow clon ing

F ig-3:D eep clon ing

Sha llow Vs Deep clon ing

O bj-1

contained
O bj-1

contained
O bj-2

F ig-1:O rig inal O bject

containscontains

O bj-1

C loned
O bj-2

contained
O bj-1

contained
O bj-2

O bj-1

contained
O bj-1

contained
O bj-2

C loned
O bj-2

contained
O bj-1

contained
O bj-2

For example, invoking clone() method on a HashMap returns a shallow copy of HashMap instance, which means
the keys and values themselves are not cloned. If you want a deep copy then a simple method is to serialize
the HashMap to a ByteArrayOutputSream and then deserialize it. This creates a deep copy but does require that
all keys and values in the HashMap are Serializable. Its primary advantage is that it will deep copy any arbitrary
object graph.

List some of the methods supported by Java object class? clone(), toString(), equals(Object obj), hashCode()

 refer Q16 in Java section, wait(), notify() refer Q42 in Java section, finalize() etc.

Q 23: What is the difference between an instance variable and a static variable? Give an example where you might use

a static variable? LF
A 23:

Static variable Instance variable
Class variables are called static variables. There is only one
occurrence of a class variable per JVM per class loader.
When a class is loaded the class variables (aka static
variables) are initialised.

Instance variables are non-static and there is one
occurrence of an instance variable in each class instance
(i.e. each object).

A static variable is used in the singleton pattern. (Refer Q45 in Java section). A static variable is used with a final
modifier to define constants.

Q 24: Give an example where you might use a static method? LF

Java

30

A 24: Static methods prove useful for creating utility classes, singleton classes and factory methods (Refer Q45,
Q46 in Java section). Utility classes are not meant to be instantiated. Improper coding of utility classes can lead to
procedural coding. java.lang.Math, java.util.Collections etc are examples of utility classes in Java.

Q 25: What are access modifiers? LF
A 25:

 Modifier Used with Description
public Outer classes, interfaces,

constructors, Inner classes, methods
and field variables

A class or interface may be accessed from outside the
package. Constructors, inner classes, methods and field
variables may be accessed wherever their class is
accessed.

protected Constructors, inner classes, methods,
and field variables.

Accessed by other classes in the same package or any
subclasses of the class in which they are referred (i.e. same
package or different package).

private Constructors, inner classes,
methods and field variables,

Accessed only within the class in which they are declared

No modifier:
(Package by
default).

Outer classes, inner classes,
interfaces, constructors, methods, and
field variables

Accessed only from within the package in which they are
declared.

Q 26: Where and how can you use a private constructor? LF
A 26: Private constructor is used if you do not want other classes to instantiate the object. The instantiation is done by a

public static method within the same class.

 Used in the singleton pattern. (Refer Q45 in Java section).
 Used in the factory method pattern (Refer Q46 in Java section).
 Used in utility classes e.g. StringUtils etc.

Q 27: What is a final modifier? Explain other Java modifiers? LF
A 27: A final class can’t be extended i.e. A final class may not be subclassed. A final method can’t be overridden when

its class is inherited. You can’t change value of a final variable (i.e. it is a constant).

Modifier Class Method Property
static A static inner class is just an

inner class associated with
the class, rather than with an
instance.

cannot be instantiated, are called by
classname.method, can only access static
variables

Only one instance
of the variable
exists.

abstract Cannot be instantiated, must
be a superclass, used
whenever one or more
methods are abstract.

Method is defined but contains no implementation
code (implementation code is included in the
subclass). If a method is abstract then the entire
class must be abstract.

N/A

synchronized N/A Acquires a lock on the class for static methods.
Acquires a lock on the instance for non-static
methods.

N/A

transient N/A N/A

Field should not
be serialized.

final Class cannot be inherited Method cannot be overridden Makes the variable
a constant.

native N/A Platform dependent. No body, only signature. N/A

Note: Be prepared for tricky questions on modifiers like, what is a “volatile”? Or what is a “const”? Etc. The reason it is tricky is
that Java does have these keywords “const” and “volatile” as reserved, which means you can’t name your variables with these
names but modifier “const” is not yet added in the language and the modifier “volatile” is very rarely used.

The “volatile” modifier is used on member variables that may be modified simultaneously by other threads. Since other threads
cannot see local variables, there is no need to mark local variables as volatile. E.g. volatile int number; volatile private List
listItems = null; etc. The modifier volatile only synchronizes the variable marked as volatile whereas “synchronized” modifier
synchronizes all variables.

Java uses the final modifier to declare constants. A final variable or constant declared as “final” has a value that is immutable
and cannot be modified to refer to any other objects other than one it was initialized to refer to. So the “final” modifier applies only
to the value of the variable itself, and not to the object referenced by the variable. This is where the “const” modifier can come in
very useful if added to the Java language. A reference variable or a constant marked as “const” refers to an immutable object
that cannot be modified. The reference variable itself can be modified, if it is not marked as “final”. The “const” modifier will be
applicable only to non-primitive types. The primitive types should continue to use the modifier “final”.

Java

31

Q 28: What is the difference between final, finally and finalize() in Java? LF
A 28:

 final - constant declaration. Refer Q27 in Java section.
 finally - handles exception. The finally block is optional and provides a mechanism to clean up regardless of

what happens within the try block (except System.exit(0) call). Use the finally block to close files or to release
other system resources like database connections, statements etc. (Refer Q45 in Enterprise section)

 finalize() - method helps in garbage collection. A method that is invoked before an object is discarded by the
garbage collector, allowing it to clean up its state. Should not be used to release non-memory resources like
file handles, sockets, database connections etc because Java has only a finite number of these resources and
you do not know when the garbage collection is going to kick in to release these non-memory resources
through the finalize() method.

Q 29: How does Java allocate stack and heap memory? Explain re-entrant, recursive and idempotent

methods/functions? MI CI
A 29: Each time an object is created in Java it goes into the area of memory known as heap. The primitive variables like

int and double are allocated in the stack, if they are local method variables and in the heap if they are member
variables (i.e. fields of a class). In Java methods local variables are pushed into stack when a method is invoked
and stack pointer is decremented when a method call is completed. In a multi-threaded application each thread
will have its own stack but will share the same heap. This is why care should be taken in your code to avoid any
concurrent access issues in the heap space. The stack is threadsafe (each thread will have its own stack) but the
heap is not threadsafe unless guarded with synchronisation through your code.

A method in stack is re-entrant allowing multiple concurrent invocations that do not interfere with each other. A
function is recursive if it calls itself. Given enough stack space, recursive method calls are perfectly valid in Java
though it is tough to debug. Recursive functions are useful in removing iterations from many sorts of algorithms. All
recursive functions are re-entrant but not all re-entrant functions are recursive. Idempotent methods are methods,
which are written in such a way that repeated calls to the same method with the same arguments yield same
results. For example clustered EJBs, which are written with idempotent methods, can automatically recover from a
server failure as long as it can reach another server.

J a v a s t a c k & h e a p m e m o r y a l l o c a t i o n

S t a c k

H e a p

p u b l i c c l a s s S t a c k R e f {

 p u b l i c v o i d f i r s t () {
 s e c o n d () ;
 / / a f t e r
 }

 p u b l i c v o i d s e c o n d () {
 C a r c = n e w C a r () ;
 }

}

f i r s t ()

s e c o n d ()

f i r s t ()

s e c o n d () r e f c

f i r s t ()

C a r

1

2

3

4

R e f

p u b l i c c l a s s H e a p R e f {
 C a r c = n e w C a r () ;

 p u b l i c v o i d f i r s t () {
 c = N e w C a r () ;
 }
}

C a rc
R e f

C a r

c
C a r

2

1

Q 30: Explain Outer and Inner classes (or Nested classes) in Java? When will you use an Inner Class? LF

Java

32

A 30: In Java not all classes have to be defined separate from each other. You can put the definition of one class inside
the definition of another class. The inside class is called an inner class and the enclosing class is called an outer
class. So when you define an inner class, it is a member of the outer class in much the same way as other
members like attributes, methods and constructors.

Where should you use inner classes? Code without inner classes is more maintainable and readable. When
you access private data members of the outer class, the JDK compiler creates package-access member functions
in the outer class for the inner class to access the private members. This leaves a security hole. In general we
should avoid using inner classes. Use inner class only when an inner class is only relevant in the context of the
outer class and/or inner class can be made private so that only outer class can access it. Inner classes are used
primarily to implement helper classes like Iterators, Comparators etc which are used in the context of an outer
class. CO

Member inner class Anonymous inner class
public class MyStack {
 private Object[] items = null;
 …
 public Iterator iterator() {
 return new StackIterator();
 }
 //inner class
 class StackIterator implements Iterator{
 …
 public boolean hasNext(){…}
 }
}

public class MyStack {
 private Object[] items = null;
 …
 public Iterator iterator() {
 return new Iterator {
 …
 public boolean hasNext() {…}
 }
 }
}

Explain outer and inner classes?

Class Type Description Example + Class name
Outer
class

Package
member class
or interface

Top level class. Only type JVM
can recognize.

//package scope
class Outside{}

Outside.class

Inner
class

static nested
class or
interface

Defined within the context of the
top-level class. Must be static &
can access static members of its
containing class. No relationship
between the instances of outside
and Inside classes.

//package scope
class Outside {
 static class Inside{ }
}

Outside.class ,Outside$Inside.class

Inner
class

Member class Defined within the context of
outer class, but non-static. Until
an object of Outside class has
been created you can’t create
Inside.

class Outside{
 class Inside(){}
 }

Outside.class , Outside$Inside.class

Inner
class

Local class Defined within a block of code.
Can use final local variables and
final method parameters. Only
visible within the block of code
that defines it.

class Outside {
 void first() {
 final int i = 5;
 class Inside{}
 }
}

Outside.class , Outside1Inside.class

Inner
class

Anonymous
class

Just like local class, but no
name is used. Useful when only
one instance is used in a
method. Most commonly used in
AWT event model.

class Outside{
 void first() {
 button.addActionListener (new ActionListener()
 {
 public void actionPerformed(ActionEvent e) {
 System.out.println(“The button was pressed!”);
 }
 });
 }
}

Outside.class , Outside$1.class

Java

33

Q 31: What is type casting? Explain up casting vs. down casting? When do you get ClassCastException? LF DP
A 31: Type casting means treating a variable of one type as though it is another type.

When up casting primitives as shown below from left to right, automatic conversion occurs. But if you go from
right to left, down casting or explicit casting is required. Casting in Java is safer than in C or other languages that
allow arbitrary casting. Java only lets casts occur when they make sense, such as a cast between a float and an
int. However you can't cast between an int and a String (is an object in Java).

byte short int long float double

int i = 5;
long j = i; //Right. Up casting or implicit casting
byte b1 = i; //Wrong. Compile time error “Type Mismatch”.
byte b2 = (byte) i ; //Right. Down casting or explicit casting is required.

When it comes to object references you can always cast from a subclass to a superclass because a subclass
object is also a superclass object. You can cast an object implicitly to a super class type (i.e. upcasting). If this
were not the case polymorphism wouldn’t be possible.

O b je c t

V e h ic le

C a rB u s

B M W

V e h ic le v 1 = n e w C a r () ; / / R ig h t .u p c a s t in g o r im p l ic i t c a s t in g
V e h ic le v 2 = n e w V e h ic le () ;

C a r c 0 = v 1 ; / / W r o n g . c o m p ile t im e e r ro r " T y p e M is m a tc h " .
 / / E x p l ic i t o r d o w n ca s t in g is re q u ir ed

C a r c 1 = (C a r) v 1 ; / / R ig h t . d o w n c a s tin g o r e x p l ic i t c a s t in g .
 / / v 1 h a s k n o w le d g e o f C a r d u e t o l in e 1

C a r c 2 = (C a r) v 2 ; / / W r o n g . R u n t im e e x c e p tio n C la s sC a s tE x c e p t io n
 / / v 2 h a s n o k n o w le d g e o f C a r .

B u s b 1 = n e w B M W (); / / W ro n g . c o m p ile t im e e r ro r " T y p e M is m a tc h "
C a r c 3 = n e w B M W () ; / / R ig h t.u p c a s t in g o r im p l ic i t c a s t in g

C a r c 4 = (B M W)v 1 ; / / W ro n g . R u n t im e e x c ep t io n C la s s C a s tE x c e p t io n
O b je c t o = v 1 ; / / v 1 c a n o n ly b e u p c a s t to i ts p a r e n t o r
C a r c 5 = (C a r) v 1 ; / / v 1 c a n b e d o w n c a s t t o C a r d u e t o l in e 1 .

U p c a s t in g v s D o w n c a s t in g O b je c ts

You can cast down the hierarchy as well but you must explicitly write the cast and the object must be a
legitimate instance of the class you are casting to. The ClassCastException is thrown to indicate that code
has attempted to cast an object to a subclass of which it is not an instance. We can deal with the problem of
incorrect casting in two ways:

 Use the exception handling mechanism to catch ClassCastException.

try{
 Object o = new Integer(1);
 System.out.println((String) o);
}
catch(ClassCastException cce) {
 logger.log(“Invalid casting, String is expected…Not an Integer”);
 System.out.println(((Integer) o).toString());
}

 Use the instanceof statement to guard against incorrect casting.

If(v2 instanceof Car) {
 Car c2 = (Car) v2;
}

Design pattern: The “instanceof” and “typecast” constructs are shown for the illustration purpose only.
Using these constructs can be unmaintainable due to large if and elseif statements and can affect
performance if used in frequently accessed methods or loops. Look at using visitor design pattern to avoid
these constructs. (Refer Q11 in How would you go about section…).

Java

34

Points-to-ponder: We can also get a ClassCastException when two different class loaders load the same class because they
are treated as two different classes.

Q 32: What do you know about the Java garbage collector? When does the garbage collection occur? Explain different

types of references in Java? LF MI
A 32: Each time an object is created in Java, it goes into the area of memory known as heap. The Java heap is called

the garbage collectable heap. The garbage collection cannot be forced. The garbage collector runs in low
memory situations. When it runs, it releases the memory allocated by an unreachable object. The garbage
collector runs on a low priority daemon (background) thread. You can nicely ask the garbage collector to collect
garbage by calling System.gc() but you can’t force it.

What is an unreachable object? An object’s life has no meaning unless something has reference to it. If you
can’t reach it then you can’t ask it to do anything. Then the object becomes unreachable and the garbage collector
will figure it out. Java automatically collects all the unreachable objects periodically and releases the memory
consumed by those unreachable objects to be used by the future reachable objects.

G a r b a g e C o l l e c t i o n & U n r e a c h a b l e O b j e c t s

r e a c h a b l e

r e a c h a b l e

C a s e 1

C a r a = n e w C a r () ;
C a r b = n e w C a r ()

1r e f a
C a r o b j e c t

2r e f b

C a r o b j e c t

C a s e 2

a = n e w C a r () r e a c h a b l e

r e a c h a b l e

u n r e a c h a b l e

2r e f b
C a r o b j e c t

3r e f a
C a r o b j e c t

1
C a r o b j e c t

C a s e 3

a = b
u n r e a c h a b l e

r e a c h a b l e

u n r e a c h a b l e

r e f a
C a r o b j e c t

r e f b
C a r o b j e c t

1
C a r o b j e c t

2

3

C a s e 4

a = n u l l ;
b = n u l l ;

u n r e a c h a b l e

u n r e a c h a b l e

u n r e a c h a b l e

C a r o b j e c t

C a r o b j e c t

1
C a r o b j e c t

2

3

H e a p

We can use the following options with the Java command to enable tracing for garbage collection events.

-verbose:gc reports on each garbage collection event.

Explain types of references in Java? java.lang.ref package can be used to declare soft, weak and phantom
references.

 Garbage Collector won’t remove a strong reference.
 A soft reference will only get removed if memory is low. So it is useful for implementing caches while

avoiding memory leaks.
 A weak reference will get removed on the next garbage collection cycle. Can be used for implementing

canonical maps. The java.util.WeakHashMap implements a HashMap with keys held by weak references.
 A phantom reference will be finalized but the memory will not be reclaimed. Can be useful when you want to

be notified that an object is about to be collected.

Q 33: If you have a circular reference of objects, but you no longer reference it from an execution thread, will this object

be a potential candidate for garbage collection? LF MI

Java

35

A 33: Yes. Refer diagram below.

sample code

public void buildCar() {
 Car c = new Car();
 Engine e = new Engine();
 //lets create a circular reference
 c.engine = e;
 e.car = c;
}

buildCar()

Stack Heap

Car

Engine

Before buildCar() returns

Stack Heap

Car

Engine

After buildCar() returns

Both the Car & Engine are not reachable
and potential candidate for Garbage
Collection.

Garbage Collecting Circular References

Q 34: Discuss the Java error handling mechanism? What is the difference between Runtime (unchecked) exceptions

and checked exceptions? What is the implication of catching all the exceptions with the type “Exception”? EH BP
A 34:

Errors: When a dynamic linking failure or some other “hard” failure in the virtual machine occurs, the virtual
machine throws an Error. Typical Java programs should not catch Errors. In addition, it’s unlikely that typical Java
programs will ever throw Errors either.

Exceptions: Most programs throw and catch objects that derive from the Exception class. Exceptions indicate
that a problem occurred but that the problem is not a serious JVM problem. An Exception class has many
subclasses. These descendants indicate various types of exceptions that can occur. For example,
NegativeArraySizeException indicates that a program attempted to create an array with a negative size. One
exception subclass has special meaning in the Java language: RuntimeException. All the exceptions except
RuntimeException are compiler checked exceptions. If a method is capable of throwing a checked exception it
must declare it in its method header or handle it in a try/catch block. Failure to do so raises a compiler error. So
checked exceptions can, at compile time, greatly reduce the occurrence of unhandled exceptions surfacing at
runtime in a given application at the expense of requiring large throws declarations and encouraging use of poorly-
constructed try/catch blocks. Checked exceptions are present in other languages like C++, C#, and Python.

T h ro w ab le a n d its s u b c lass es

O bjec t

E xcep tion
E rro r

T hrow ab le

R untim eE xcep tionIO E xcep tion

N u llP o in te rE xcep tion

L inkageE rro r

Runtime Exceptions (unchecked exception)

A RuntimeException class represents exceptions that occur within the Java virtual machine (during runtime). An
example of a runtime exception is NullPointerException. The cost of checking for the runtime exception often
outweighs the benefit of catching it. Attempting to catch or specify all of them all the time would make your code
unreadable and unmaintainable. The compiler allows runtime exceptions to go uncaught and unspecified. If you

Java

36

like, you can catch these exceptions just like other exceptions. However, you do not have to declare it in your
“throws" clause or catch it in your catch clause. In addition, you can create your own RuntimeException
subclasses and this approach is probably preferred at times because checked exceptions can complicate method
signatures and can be difficult to follow.

Exception handling best practices: BP

Why is it not advisable to catch type “Exception”? CO

Exception handling in Java is polymorphic in nature. For example if you catch type Exception in your code then it
can catch or throw its descendent types like IOException as well. So if you catch the type Exception before the
type IOException then the type Exception block will catch the entire exceptions and type IOException block is
never reached. In order to catch the type IOException and handle it differently to type Exception, IOException
should be caught first (remember that you can’t have a bigger basket above a smaller basket).

The diagram below is an example for illustration only. In practice it is not recommended to catch type
“Exception”. We should only catch specific subtypes of the Exception class. Having a bigger basket (i.e.
Exception) will hide or cause problems. Since the RunTimeException is a subtype of Exception, catching the type
Exception will catch all the run time exceptions (like NullpointerException, ArrayIndexOut-OfBounds-Exception) as
well.

Catching Exceptions

try{}
catch(Exception ex){

//this block is reached
}
catch(IOException ioe) {

//this block is never reached
//There is a bigger basket

 //above me who will catch it
 //before I can.
}

try{}
catch(IOException ioe){
}
catch(Exception ex) {
}

Wrong approach

Right approach

basket

basket

basket

basket

Hint: as shown in the
figure, think of catching an
exception in a basket. You
should always have the
smaller basket above the
bigger one. Otherwise the
bigger basket will catch all
the exceptions and smaller
baskets will not catch any.

Why should you throw an exception early? CO

The exception stack trace helps you pinpoint where an exception occurred by showing us the exact sequence of
method calls that lead to the exception. By throwing your exception early, the exception becomes more accurate
and more specific. Avoid suppressing or ignoring exceptions. Also avoid using exceptions just to get a flow control.

Instead of:
…
InputStream in = new FileInputStream(fileName); // assume this line throws an exception because filename == null.
…

Use the following code because you get a more accurate stack trace:
…
if(filename == null) {
 throw new IllegalArgumentException(“file name is null”);
}

InputStream in = new FileInputStream(fileName);
…

Why should you catch a checked exception late in a catch {} block?

You should not try to catch the exception before your program can handle it in an appropriate manner. The natural
tendency when a compiler complains about a checked exception is to catch it so that the compiler stops reporting

Java

37

errors. The best practice is to catch the exception at the appropriate layer (e.g. an exception thrown at an
integration layer can be caught at a presentation layer in a catch {} block), where your program can either
meaningfully recover from the exception and continue to execute or log the exception only once in detail, so that
user can identify the cause of the exception.

Note: Due to heavy use of checked exceptions and minimal use of unchecked exceptions, there has been a hot debate in the
Java community regarding true value of checked exceptions. Use checked exceptions when the client code can take some
useful recovery action based on information in exception. Use unchecked exception when client code cannot do anything. For
example, convert your SQLException into another checked exception if the client code can recover from it and convert your
SQLException into an unchecked (i.e. RuntimeException) exception, if the client code cannot do anything about it.

A note on key words for error handling:
throw / throws – used to pass an exception to the method that called it.
try – block of code will be tried but may cause an exception.
catch – declares the block of code, which handles the exception.
finally – block of code, which is always executed (except System.exit(0) call) no matter what program flow, occurs when dealing
with an exception.
assert – Evaluates a conditional expression to verify the programmer’s assumption.

Q 35: What is a user defined exception? EH
A 35: User defined exceptions may be implemented by defining a new exception class by extending the Exception class.

public class MyException extends Exception {

 /* class definition of constructors goes here */
 public MyException() {
 super();
 }

 public MyException (String errorMessage) {
 super (errorMessage);
 }
}

Throw and/or throws statement is used to signal the occurrence of an exception. Throw an exception:

throw new MyException(“I threw my own exception.”)

To declare an exception: public myMethod() throws MyException {…}

Q 36: What is the difference between processes and threads? LF MI CI
A 36: A process is an execution of a program but a thread is a single execution sequence within the process. A process

can contain multiple threads. A thread is sometimes called a lightweight process.

Process (JVM)

Stack Stack Stack

Each thread has its
own stack m em ory

Thread 1 Thread 3Thread 2

m ethod1() m ethod1() m ethod1()

Process vs Threads

Heap
O bject1 O bject

2
S ingle heap per process
shared by a ll the threads

A JVM runs in a single process and threads in a JVM share the heap belonging to that process. That is why
several threads may access the same object. Threads share the heap and have their own stack space. This is

Java

38

how one thread’s invocation of a method and its local variables are kept thread safe from other threads. But the
heap is not thread-safe and must be synchronized for thread safety.

Q 37: Explain different ways of creating a thread? LF
A 37: Threads can be used by either :

 Extending the Thread class
 Implementing the Runnable interface.

class Counter extends Thread {

 //method where the thread execution will start
 public void run(){
 //logic to execute in a thread
 }

 //let’s see how to start the threads
 public static void main(String[] args){
 Thread t1 = new Counter();
 Thread t2 = new Counter();
 t1.start(); //start the first thread. This calls the run() method
 t2.start(); //this starts the 2nd thread. This calls the run() method
 }
}

class Counter extends Base implements Runnable {

 //method where the thread execution will start
 public void run(){
 //logic to execute in a thread
 }

 //let us see how to start the threads
 public static void main(String[] args){
 Thread t1 = new Thread(new Counter());
 Thread t2 = new Thread(new Counter());
 t1.start(); //start the first thread. This calls the run() method
 t2.start(); //this starts the 2nd thread. This calls the run() method
 }
}

The runnable interface is preferred, as it does not require your object to inherit a thread because when you need
multiple inheritance, only interfaces can help you. In the above example we had to extend the Base class so
implementing runnable interface is an obvious choice. Also note how the threads are started in each of the
different cases as shown in the code sample.

Q 38: Briefly explain high-level thread states? LF
A 38: The state chart diagram below describes the thread states. (Refer Q107 in Enterprise section for state chart

diagram).

data/sync
received

Thread states(StateM achine diagram)

start();
Runnable

Dead
(finished)

W aiting

Running
(executing)done

Object.notify();
Object.notifyAll(); Sleeping

Scheduler swap
or Thread.yield();

chosen by
scheduler

Thread.sleep();
Object.w ait();

B locked on I/O
or

Synchronized
another thread closes socket

(Diagram sourced from: http://www.wilsonmar.com/1threads.htm)

Java

39

 Runnable — waiting for its turn to be picked for execution by the thread schedular based on thread priorities.

 Running: The processor is actively executing the thread code. It runs until it becomes blocked, or voluntarily

gives up its turn with this static method Thread.yield(). Because of context switching overhead, yield() should
not be used very frequently.

 Waiting: A thread is in a blocked state while it waits for some external processing such as file I/O to finish.

 Sleeping: Java threads are forcibly put to sleep (suspended) with this overloaded method:

Thread.sleep(milliseconds), Thread.sleep(milliseconds, nanoseconds);

 Blocked on I/O: Will move to runnable after I/O condition like reading bytes of data etc changes.

 Blocked on synchronization: Will move to Runnable when a lock is acquired.

 Dead: The thread is finished working.

Q 39: What is the difference between yield and sleeping? LF
A 39: When a task invokes yield(), it changes from running state to runnable state. When a task invokes sleep(), it

changes from running state to waiting/sleeping state.

Q 40: How does thread synchronization occurs inside a monitor? What levels of synchronization can you apply? What is

the difference between synchronized method and synchronized block? LF CI PI
A 40: In Java programming, each object has a lock. A thread can acquire the lock for an object by using the

synchronized keyword. The synchronized keyword can be applied in method level (coarse grained lock – can
affect performance adversely) or block level of code (fine grained lock). Often using a lock on a method level is
too coarse. Why lock up a piece of code that does not access any shared resources by locking up an entire
method. Since each object has a lock, dummy objects can be created to implement block level synchronization.
The block level is more efficient because it does not lock the whole method.

class MethodLevel {
 //shared among threads
 SharedResource x, y ;

 pubic void synchronized
method1() {
 //multiple threads can't access
 }

 pubic void synchronized
method2() {
 //multiple threads can't access
 }

 public void method3() {
 //not synchronized
 //multiple threads can access
 }
}

class BlockLevel {
 //shared among threads
 SharedResource x, y ;
 //dummy objects for locking
 Object xLock = new Object(), yLock = new Object();

 pubic void method1() {
 synchronized(xLock){
 //access x here. thread safe
 }
 //do something here but don't use
SharedResource x, y ;

 synchronized(xLock) {
 synchronized(yLock) {
 //access x,y here. thread safe
 }
 }
 //do something here but don't use
SharedResource x, y ;
 }
}

The JVM uses locks in conjunction with monitors. A monitor is basically a guardian who watches over a sequence
of synchronized code and making sure only one thread at a time executes a synchronized piece of code. Each
monitor is associated with an object reference. When a thread arrives at the first instruction in a block of code it
must obtain a lock on the referenced object. The thread is not allowed to execute the code until it obtains the lock.

Java

40

Once it has obtained the lock, the thread enters the block of protected code. When the thread leaves the block, no
matter how it leaves the block, it releases the lock on the associated object.

Why synchronization is important? Without synchronization, it is possible for one thread to modify a shared
object while another thread is in the process of using or updating that object’s value. This often causes dirty data
and leads to significant errors. The disadvantage of synchronization is that it can cause deadlocks when two
threads are waiting on each other to do something. Also synchronized code has the overhead of acquiring lock,
which can adversely the performance.

Q 41: What is a daemon thread? LF
A 41: Daemon threads are sometimes called "service" threads. These are threads that normally run at a low priority and

provide a basic service to a program or programs when activity on a machine is reduced. An example of a daemon
thread that is continuously running is the garbage collector thread. This thread is provided by the JVM.

Q 42: How can threads communicate with each other? How would you implement a producer (one thread) and a

consumer (another thread) passing data (via stack)? LF
A 42: The wait(), notify(), and notifyAll() methods are used to provide an efficient way for threads to communicate with

each other. This communication solves the ‘consumer-producer problem’. This problem occurs when the
producer thread is completing work that the other thread (consumer thread) will use.

Example: If you imagine an application in which one thread (the producer) writes data to a file while a second
thread (the consumer) reads data from the same file. In this example the concurrent threads share the same
resource file. Because these threads share the common resource file they should be synchronized. Also these
two threads should communicate with each other because the consumer thread, which reads the file, should wait
until the producer thread, which writes data to the file and notifies the consumer thread that it has completed its
writing operation.

Let’s look at a sample code where count is a shared resource. The consumer thread will wait inside the
consume() method on the producer thread, until the producer thread increments the count inside the produce()
method and subsequently notifies the consumer thread. Once it has been notified, the consumer thread waiting
inside the consume() method will give up its waiting state and completes its method by consuming the count (i.e.
decrementing the count).

T h re a d c o m m u n ic a t io n (C o n s u m e r v s P ro d u c e r th re a d s)

C la ss C o n su m e rP ro d u c e r {

 p r iv a te in t c o u n t ;

 p u b lic s y n c h ro n iz e d v o id c o n su m e (){
 w h ile (c o u n t = = 0) {
 t r y {
 w a it()
 }
 c a tc h (I n te r ru p te d E x c e p t io n ie) {
 / / k e e p t ry in g
 }
 }
 c o u n t - - ; / / c o n su m e d
 }

 p r iv a te s y n c h ro n iz e d v o id p ro d u c e (){
 c o u n t+ + ;
 n o tify () ; / / n o t ify th e c o n su m e r th a t c o u n t h a s b e e n in c re m e n te d .
 }
}

Q 43: If 2 different threads hit 2 different synchronized methods in an object at the same time will they both continue?

LF
A 43: No. Only one method can acquire the lock.

Java

41

run(){
 car1.method2();
}

Thread1

run(){
 car1.method1();
 car2.method1();
 car1.method3()
}

Thread2

run(){
 car2.method2();
 car2.method3();
}

Thread3

synchronized method1() {}

synchronized method2() {}

method3() {}

Car1 object

synchronized method1() {}

synchronized method2() {}

method3() {}

Car2 object

Thread synchronization

4. Always ok. method3() is not synchronized

6.Always ok. method3() is not synchronized

1. ok. method1() is not busy.

3. ok. Method2() is not busy

2. No. method2() is busy

5. No. method1() is busy.

Q 44: Explain threads blocking on I/O? LF
A 44: Occasionally threads have to block on conditions other than object locks. I/O is the best example of this. Threads

block on I/O (i.e. enters the waiting state) so that other threads may execute while the I/O operation is performed.
When threads are blocked (say due to time consuming reads or writes) on an I/O call inside an object’s
synchronized method and also if the other methods of the object are also synchronized then the object is
essentially frozen while the thread is blocked.

Be sure to not synchronize code that makes blocking calls, or make sure that a non-synchronized method
exists on an object with synchronized blocking code. Although this technique requires some care to ensure that
the resulting code is still thread safe, it allows objects to be responsive to other threads when a thread holding its
locks is blocked.

Note: The java.nio.* package was introduced in JDK1.4. The coolest addition is nonblocking I/O (aka NIO that
stands for New I/O). Refer Q20 in Java section for NIO.

Note: Q45 & Q46 are very popular questions on design patterns.

Q 45: What is a singleton pattern? How do you code it in Java? DP MI CO
A 45: A singleton is a class that can be instantiated only one time in a JVM per class loader. Repeated calls always

return the same instance. Ensures that a class has only one instance, and provide a global point of access. It
can be an issue if singleton class gets loaded by multiple class loaders.

public class OnlyOne {

 private static OnlyOne one = new OnlyOne();

 private OnlyOne(){… } //private constructor. This class cannot be instantiated from outside.

 public static OnlyOne getInstance() {
 return one;
 }
}

To use it:

//No matter how many times you call, you get the same instance of the object.

OnlyOne myOne = OnlyOne.getInstance();

Java

42

Note: The constructor must be explicitly declared and should have the private access modifier, so that it cannot be
instantiated from out side the class. The only way to instantiate an instance of class OnlyOne is through the
getInstance() method with a public access modifier.

When to use: Use it when only a single instance of an object is required in memory for a single point of access.
For example the following situations require a single point of access, which gets invoked from various parts of
the code.

 Accessing application specific properties through a singleton object, which reads them for the first time from
a properties file and subsequent accesses are returned from in-memory objects. Also there could be
another piece of code, which periodically synchronizes the in-memory properties when the values get
modified in the underlying properties file. This piece of code accesses the in-memory objects through the
singleton object (i.e. global point of access).

 Accessing in-memory object cache or object pool, or non-memory based resource pools like sockets,

connections etc through a singleton object (i.e. global point of access).

What is the difference between a singleton class and a static class? Static class is one approach to make a class singleton
by declaring the class as “final” so that it cannot be extended and declaring all the methods as static so that you can’t create any
instance of the class and can call the static methods directly.

Q 46: What is a factory pattern? DP CO
A 46: A Factory method pattern (aka Factory pattern) is a creational pattern. The creational patterns abstract the

object instantiation process by hiding how the objects are created and make the system independent of the object
creation process. An Abstract factory pattern is one level of abstraction higher than a factory method pattern,
which means it returns the factory classes.

Factory method pattern (aka Factory pattern) Abstract factory pattern
Factory for what? Factory pattern returns one of the
several product subclasses. You should use a factory
pattern If you have a super class and a number of sub-
classes, and based on some data provided, you have to
return the object of one of the subclasses. Let’s look at
a sample code:

Factory pattern

Factory Product hierachy

+draw()

<<abstract>>
Shape

+draw()

Circle

+draw()

Square

+getShape(int shapeId)()

ShapeFactory

+getShape (int shapeId)()

SimpleShapeFactory

instantiates

public interface Const {
 public static final int SHAPE_CIRCLE =1;
 public static final int SHAPE_SQUARE =2;
 public static final int SHAPE_HEXAGON =3;
}

public class ShapeFactory {
 public abstract Shape getShape(int shapeId);
}

public class SimpleShapeFactory extends
 ShapeFactory throws BadShapeException {

An Abstract factory pattern is one level of abstraction higher than
a factory method pattern, which means the abstract factory
returns the appropriate factory classes, which will later on
return one of the product subclasses. Let’s look at a sample code:

public class ComplexShapeFactory extends ShapeFactory {
 throws BadShapeException {
 public Shape getShape(int shapeTypeId){
 Shape shape = null;
 if(shapeTypeId == Const.SHAPE_HEXAGON) {
 shape = new Hexagon();//complex shape
 }
 else throw new BadShapeException
 (“shapeTypeId=” + shapeTypeId);
 return shape;
 }
}

Now let’s look at the abstract factory, which returns one of the
types of ShapeFactory:

public class ShapeFactoryType
 throws BadShapeFactoryException {

 public static final int TYPE_SIMPLE = 1;
 public static final int TYPE_COMPLEX = 2;

 public ShapeFactory getShapeFactory(int type) {

 ShapeFactory sf = null;

 if(type == TYPE_SIMPLE) {
 sf = new SimpleShapeFactory();
 }
 else if (type == TYPE_COMPLEX) {
 sf = new ComplexShapeFactory();
 }
 else throw new BadShapeFactoryException(“No factory!!”);

Java

43

 public Shape getShape(int shapeTypeId){
 Shape shape = null;
 if(shapeTypeId == Const.SHAPE_CIRCLE) {
 //in future can reuse or cache objects.
 shape = new Circle();
 }
 else if(shapeTypeId == Const.SHAPE_SQUARE) {
 //in future can reuse or cache objects
 shape = new Square();
 }
 else throw new BadShapeException
 (“ShapeTypeId=”+ shapeTypeId);

 return shape;
 }
}

Now let’s look at the calling code, which uses the
factory:

ShapeFactory factory = new SimpleShapeFactory();

//returns a Shape but whether it is a Circle or a
//Square is not known to the caller.
Shape s = factory.getShape(1);
s.draw(); // circle is drawn

//returns a Shape but whether it is a Circle or a
//Square is not known to the caller.
s = factory.getShape(2);
s.draw(); //Square is drawn

 return sf;
 }
}

Now let’s look at the calling code, which uses the factory:

ShapeFactoryType abFac = new ShapeFactoryType();
ShapeFactory factory = null;
Shape s = null;

//returns a ShapeFactory but whether it is a
//SimpleShapeFactory or a ComplexShapeFactory is not
//known to the caller.
factory = abFac.getShapeFactory(1);//returns SimpleShapeFactory
//returns a Shape but whether it is a Circle or a Pentagon is
//not known to the caller.
s = factory.getShape(2); //returns square.
s.draw(); //draws a square

//returns a ShapeFactory but whether it is a
//SimpleShapeFactory or a ComplexShapeFactory is not
//known to the caller.
factory = abFac.getShapeFactory(2);
//returns a Shape but whether it is a Circle or a Pentagon is
//not known to the caller.
s = factory.getShape(3); //returns a pentagon.
s.draw(); //draws a pentagon

Why use factory pattern or abstract factory pattern? Factory pattern returns an instance of several (product
hierarchy) subclasses (like Circle, Square etc), but the calling code is unaware of the actual implementation class.
The calling code invokes the method on the interface (for example Shape) and using polymorphism the correct
draw() method gets invoked [Refer Q8 in Java section for polymorphism]. So, as you can see, the factory pattern
reduces the coupling or the dependencies between the calling code and called objects like Circle, Square etc. This
is a very powerful and common feature in many frameworks. You do not have to create a new Circle or a new
Square on each invocation as shown in the sample code, which is for the purpose of illustration and simplicity. In
future, to conserve memory you can decide to cache objects or reuse objects in your factory with no changes
required to your calling code. You can also load objects in your factory based on attribute(s) read from an external
properties file or some other condition. Another benefit going for the factory is that unlike calling constructors
directly, factory patterns have more meaningful names like getShape(…), getInstance(…) etc, which may make
calling code more clear.

Can we use the singleton pattern within our factory pattern code? Yes. Another important aspect to consider
when writing your factory class is that, it does not make sense to create a new factory object for each invocation
as it is shown in the sample code, which is just fine for the illustration purpose.

ShapeFactory factory = new SimpleShapeFactory();

To overcome this, you can incorporate the singleton design pattern into your factory pattern code. The singleton
design pattern will create only a single instance of your SimpleShapeFactory class. Since an abstract factory
pattern is unlike factory pattern, where you need to have an instance for each of the two factories (i.e.
SimpleShapeFactory and ComplexShapeFactory) returned, you can still incorporate the singleton pattern as an
access point and have an instance of a HashMap, store your instances of both factories. Now your calling method
uses a static method to get the same instance of your factory, hence conserving memory and promoting object
reuse:

ShapeFactory factory = ShapeFactory. Ge/tFactoryInstance();
factory.getShape();

Note: Since questions on singleton pattern and factory pattern are commonly asked in the interviews, they are included as part
of this section. To learn more about design patterns refer Q11 in How would you go about section…?

Q 47: What is a socket? How do you facilitate inter process communication in Java? LF

Java

44

A 47: A socket is a communication channel, which facilitates inter-process communication (For example
communicating between two JVMs, which may or may not be running on two different physical machines). A
socket is an endpoint for communication. There are two kinds of sockets, depending on whether one wishes to
use a connectionless or a connection-oriented protocol. The connectionless communication protocol of the
Internet is called UDP. The connection-oriented communication protocol of the Internet is called TCP. UDP
sockets are also called datagram sockets. Each socket is uniquely identified on the entire Internet with two
numbers. The first number is a 128-bit integer called the Internet Address (or IP address). The second number is
a 16-bit integer called the port of the socket. The IP address is the location of the machine, which you are trying to
connect to and the port number is the port on which the server you are trying to connect is running. The port
numbers 0 to 1023 are reserved for standard services such as e-mail, FTP, HTTP etc.

The lifetime of the socket is made of 3 phases: Open Socket Read and Write to Socket Close Socket

To make a socket connection you need to know two things: An IP address and port on which to listen/connect. In
Java you can use the Socket (client side) and ServerSocket (Server side) classes.

Sockets

Sending Process(JVM) Receiving Process(JVM)

Operating System Operating System

IP address: 127.0.0.1
port: 6678

port: 6678

Network communication

sockets

Q 48: How will you call a Web server from a stand alone Java application? LF
A 48: Using the java.net.URLConnection and its subclasses like HttpURLConnection and JarURLConnection.

URLConnection HttpClient (browser)
Supports HEAD, GET, POST, PUT, DELETE, TRACE and
OPTIONS

Supports HEAD, GET, POST, PUT, DELETE, TRACE and
OPTIONS.

Does not support cookies. Does support cookies.

Can handle protocols other than http like ftp, gopher, mailto
and file.

Handles only http.

Java – Swing

Q 49: What is the difference between AWT and Swing? LF DC
A 49: Swing provides a richer set of components than AWT. They are 100% Java-based. There are a few other

advantages to Swing over AWT:

• Swing provides both additional components like JTable, JTree etc and added functionality to AWT-replacement
components.

• Swing components can change their appearance based on the current “look and feel” library that’s being used.
• Swing components follow the Model-View-Controller (MVC) paradigm, and thus can provide a much more

flexible UI.
• Swing provides “extras” for components, such as: icons on many components, decorative borders for

components, tool tips for components etc.
• Swing components are lightweight (less resource intensive than AWT).

Java

45

• Swing provides built-in double buffering (which means an off-screen buffer [image] is used during drawing
and then the resulting bits are copied onto the screen. The resulting image is smoother, less flicker and quicker
than drawing directly on the screen).

• Swing provides paint debugging support for when you build your own component i.e.-slow motion rendering.

Swing also has a few disadvantages:

• If you’re not very careful when programming, it can be slower than AWT (all components are drawn).
• Swing components that look like native components might not behave exactly like native components.

Q 50: Explain the Swing Action architecture? LF DP
A 50: The Swing Action architecture is used to implement shared behaviour between two or more user interface

components. For example, the menu items and the tool bar buttons will be performing the same action no matter
which one is clicked. Another distinct advantage of using actions is that when an action is disabled then all the
components, which use the Action, become disabled.

Design pattern: The javax.swing.Action interface extends the ActionListener interface and is an abstraction of a
command that does not have an explicit UI component bound to it. The Action architecture is an implementation of
a command design pattern. This is a powerful design pattern because it allows the separation of controller logic
of an application from its visual representation. This allows the application to be easily configured to use different
UI elements without having to re-write the control or call-back logic.

Defining action classes:

class FileAction extends AbstractAction {
 //Constructor
 FileAction(String name) {
 super(name);
 }

 public void actionPerformed(ActionEvent ae){
 //add action logic here

}
}

To add an action to a menu bar:

JMenu fileMenu = new JMenu(“File”);
FileAction newAction = new FileAction(“New”);
JMenuItem item = fileMenu.add(newAction);
item.setAccelaror(KeyStroke.getKeyStroke(‘N’, Event.CTRL_MASK));

To add action to a toolbar

private JToolBar toolbar = new JToolBar();
toolbar.add(newAction);

So, an action object is a listener as well as an action.

Q 51: If you add a component to the CENTER of a border layout, which directions will the component stretch? LF
A 51: The component will stretch both horizontally and vertically. It will occupy the whole space in the middle.

Q 52: What is the base class for all Swing components? LF
A 52: All the Swing components start with ‘J’. The hierarchy diagram is shown below. JComponent is the base class.

Java

46

Sw ing Hierarchy

Panel

Applet

JApplet

Container

Com ponent

Object

W indow

Fram e Dialog

JFram e JDialog

JCom ponent

JText

JLabel

JList

Jm enuBar

JoptionPane

JPanel

JScrollBar

AbstractButton

JToggleButton JButton Jm enuItem

(Diagram source: http://www.particle.kth.se/~fmi/kurs/PhysicsSimulation/Lectures/07A/swingDesign.html)

Design pattern: As you can see from the above diagram, containers collect components. Sometimes you want
to add a container to another container. So, a container should be a component. For example
container.getPreferredSize() invokes getPreferredSize() of all contained components. Composite design
pattern is used in GUI components to achieve this. A composite object is an object, which contains other
objects. Composite design pattern manipulates composite objects just like you manipulate individual
components. Refer Q11 in How would you go about…? section.

+operation1()
+operation2()
+addComponent()
+removeComponent()

Composite

+operation1()
+operation2()

Component

+operation1()
+operation2()

Leaf

Client

1

-children

*

Composite Design Pattern

Q 53: Explain the Swing event dispatcher mechanism? LF CI PI
A 53: Swing components can be accessed by the Swing event dispatching thread. A few operations are guaranteed to

be thread-safe but most are not. Generally the Swing components should be accessed through this event-

Java

47

dispatching thread. The event-dispatching thread is a thread that executes drawing of components and event-
handling code. For example the paint() and actionPerformed() methods are automatically executed in the event-
dispatching thread. Another way to execute code in the event-dispatching thread from outside event-handling or
drawing code, is using SwingUtilities invokeLater() or invokeAndWait() method. Swing lengthy initialization
tasks (e.g. I/O bound and computationally expensive tasks), should not occur in the event-dispatching
thread because this will hold up the dispatcher thread. If you need to create a new thread for example, to
handle a job that’s computationally expensive or I/O bound then you can use the thread utility classes such as
SwingWorker or Timer without locking up the event-dispatching thread.

• SwingWorker – creates a background thread to execute time consuming operations.
• Timer – creates a thread that executes at certain intervals.

However after the lengthy initialization the GUI update should occur in the event dispatching thread, for thread
safety reasons. We can use invokeLater() to execute the GUI update in the event-dispatching thread. The other
scenario where invokeLater() will be useful is that the GUI must be updated as a result of non-AWT event.

Q 54: What do you understand by MVC as used in a JTable? LF DP
A 54: MVC stands for Model View Controller architecture. Swing “J” components (e.g. JTable, JList, JTree etc) use a

modified version of MVC. MVC separates a model (or data source) from a presentation and the logic that
manages it.

C om ponent
(E g: JTab le):View & contro ller

Sw ing M VC arch itecture (e .g . JTab le)

M odel
E g: Tab leM ode l

fo r JTab le
U ID elegate

U I
M anager
look-and-fee l

• Component (e.g. JTable, JTree, and JList): coordinates actions of model and the UI delegate. Each generic

component class handles its own individual view-and-controller responsibilities.

• Model (e.g. TableModel): charged with storing the data.

• UIDelegate: responsible for getting the data from model and rendering it to screen. It delegates any look-and-
feel aspect of the component to the UI Manager.

Q 55: Explain layout managers? LF
A 55: Layout managers are used for arranging GUI components in windows. The standard layout managers are:

• FlowLayout: Default layout for Applet and Panel. Lays out components from left to right, starting new rows if
necessary.

• BorderLayout: Default layout for Frame and Dialog. Lays out components in north, south, east, west and

center. All extra space is placed on the center.

• CardLayout: stack of same size components arranged inside each other. Only one is visible at any time. Used
in TABs.

• GridLayout: Makes a bunch of components equal in size and displays them in the requested number of rows

and columns.

• GridBagLayout: Most complicated but the most flexible. It aligns components by placing them within a grid of
cells, allowing some components to span more than one cell. The rows in the grid aren’t necessarily all the
same height, similarly, grid columns can have different widths as well.

Java

48

• BoxLayout: is a full-featured version of FlowLayout. It stacks the components on top of each other or places

them in a row.

Complex layouts can be simplified by using nested containers for example having panels within panels and each
panel can use its own LayoutManager. It is also possible to write your own layout manager or use manual
positioning of the GUI components. Note: Further reading on each LayoutManagers is recommended for Swing
developers.

Design pattern: The AWT containers like panels, dialog boxes, windows etc do not perform the actual laying out
of the components. They delegate the layout functionality to layout managers. The layout managers make use of
the strategy design pattern, which encapsulates family of algorithms for laying out components in the containers.
If a particular layout algorithm is required other than the default algorithm, an appropriate layout manager can be
instantiated and plugged into the container (e.g. panels by default uses the FlowLayout but it can be changed by
executing panel.setLayout(new GridLayout(4,5))). This enables the layout algorithms to vary independently
from the containers that uses them, this is one of the key benefits of the strategy pattern.

Q 56: Explain the Swing delegation event model? LF
A 56: In this model, the objects that receive user events notify the registered listeners of the user activity. In most cases

the event receiver is a component.

• Event Types: ActionEvent, KeyEvent, MouseEvent, WindowEvent etc.
• Event Processors: JButton, JList etc.
• EventListeners: ActionListener, ComponentListener, KeyListener etc.

Swing Event Delegation Model

EVENT PROCESSOR
(eg JButton, JList etc)

EVENT LISTENER
(eg ActionListener etc)

EVENT

no
tifi

es

re
gis

te
rs

distributed

Java – Applet

Q 57: How will you initialize an applet? LF
A 57: By writing your initialization code in the applet’s init() method or applet’s constructor.

Q 58: What is the order of method invocation in an applet? LF
A 58: The Applet’s life cycle methods are as follows:

• public void init() : Initialization method called only once by the browser.

• public void start() : Method called after init() and contains code to start processing. If the user leaves the
page and returns without killing the current browser session, the start () method is called without being
preceded by init ().

• public void stop() : Stops all processing started by start (). Done if user moves off page.

• public void destroy() : Called if current browser session is being terminated. Frees all resources used by the

applet.

Java

49

Q 59: How would you communicate between applets and servlets? LF
A 59: We can use the java.net.URLConnection and java.net.URL classes to open a standard HTTP connection and

“tunnel” to a Web server. The server then passes this information to the servlet. Basically, the applet pretends to
be a Web browser, and the servlet doesn’t know the difference. As far as the servlet is concerned, the applet is
just another HTTP client. Applets can communicate with servlets using GET or POST methods.

The parameters can be passed between the applet and the servlet as name value pairs.

 http://www.foo.com/servlet/TestServlet?LastName=Jones&FirstName=Joe).

Objects can also be passed between applet and servlet using object serialization. Objects are serialized to and
from the inputstream and outputstream of the connection respectively.

Q 60: How will you communicate between two Applets? LF
A 60: All the applets on a given page share the same AppletContext. We obtain this applet context as follows:

AppletContext ac = getAppletContext();

AppletContext provides applets with methods such as getApplet(name), getApplets(),getAudioClip, getImage,
showDocument and showStatus().

Q 61: What is a signed Applet? LF SE
A 61: A signed Applet is a trusted Applet. By default, and for security reasons, Java applets are contained within a

“sandbox”. Refer to the diagram below:

This means that the applets can’t do anything, which might be construed as threatening to the user’s machine
(e.g. reading, writing or deleting local files, putting up message windows, or querying various system parameters).
Early browsers had no provisions for Java applets to reach outside of the sandbox. Recent browsers, however
(Internet Explorer 4 on Windows etc), have provisions to give “trusted” applets the ability to work outside the
sandbox. For this power to be granted to one of your applets, the applet’s code must be digitally signed with your
unforgeable digital ID, and then the user must state that he trusts applets signed with your ID. The untrusted
applet can request to have privileges outside the sand box but will have to request the user for privileges every
time it executes. But with the trusted applet the user can choose to remember their answer to the request, which
means they won’t be asked again.

Signed Applet

Valuable resources like files
etc

localcode RemoteCode

Signed unsigned

JVM
 Sandbox

can

access

Q 62: What is the difference between an applet and an application? LF
A 62:

Applet Application
Applets don’t have a main method. They operate on life
cycle methods init(), start(), stop(), destroy() etc.

Has a static main() method.

Applets can be embedded in HTML pages and Has no support for embedding or downloading. Has

Java

50

downloaded over the Internet. Has a sand box security
model.

no inherent security restriction.

Can only be executed within a Java compatible
container like browser, appletviewer etc.

Applications are executed at command line by
java.exe.

Java – Performance and Memory leaks

Q 63: How would you improve performance of a Java application? PI BP
A 63:

 Pool valuable system resources like threads, database connections, socket connections etc. Emphasise on
reuse of threads from a pool of threads. Creating new threads and discarding them after use can adversely
affect performance. Also consider using multi-threading in your single-threaded applications where possible to
enhance performance. Optimze the pool sizes based on system and application specifications and
requirements.

 Optimize your I/O operations: use buffering (Refer Q21 in Java section) when writing to and reading from

files and/or streams. Avoid writers/readers if you are dealing with only ASCII characters. You can use streams
instead, which are faster. Avoid premature flushing of buffers. Also make use of the performance and
scalability enhancing features such as non-blocking and asynchronous I/O, mapping of file to memory etc
offered by the NIO (New I/O).

 Minimize network overheads by retrieving several related items simultaneously in one remote invocation if

possible. Remote method invocations involve a network round-trip, marshalling and unmarshalling of
parameters, which can cause huge performance problems if the remote interface is poorly designed. (Refer
Q125 in Enterprise section).

 Establish whether you have a potential memory problem and manage your objects efficiently: remove

references to the short-lived objects from long-lived objects like Java collections etc (Refer Q64 in Java
section) to minimise any potential memory leaks. Also reuse objects where possible. It is cheaper to recycle
objects than creating new objects each time. Avoid creating extra objects unnecessarily. For example use
mutable StringBuffer/StringBuilder classes instead of immutable String objects in computation expensive
loops as discussed in Q17 in Java section. Automatic garbage collection is one of the most highly touted
conveniences of Java. However, it comes at a price. Creating and destroying objects occupies a significant
chunk of the JVM's time. Wherever possible, you should look for ways to minimise the number of objects
created in your code:

 If repeating code within a loop, avoid creating new objects for each iteration. Create objects before

entering the loop (i.e. outside the loop) and reuse them if possible.

 For complex objects that are used frequently, consider creating a pool of recyclable objects rather than
always instantiating new objects. This adds additional burden on the programmer to manage the pool,
but in select cases can represent an order of magnitude performance gain.

 Use lazy initialization when you want to distribute the load of creating large amounts of objects. Use lazy

initialization only when there is merit in the design.

 Where applicable apply the following performance tips in your code:

 Use ArrayLists, HashMap etc as opposed to Vector, Hashtable etc where possible. This is because the
methods in ArrayList, HashMap etc are not synchronized (Refer Q13 in Java Section). Even better is to
use just arrays where possible.

 Set the initial capacity of a collection (e.g. ArrayList, HashMap etc) and StringBuffer/StringBuilder

appropriately. This is because these classes must grow periodically to accommodate new elements.
So, if you have a very large ArrayList or a StringBuffer, and you know the size in advance then you can
speed things up by setting the initial size appropriately. (Refer Q15, Q17 in Java Section).

Java

51

 Minimise the use of casting or runtime type checking like instanceof in frequently executed methods
or in loops. The “casting” and “instanceof” checks for a class marked as final will be faster. Using
“instanceof” construct is not only ugly but also unmaintainable. Look at using visitor pattern (Refer
Q11 in How would you go about…? section) to avoid “instanceof” construct.

 Do not compute constants inside a large loop. Compute them outside the loop. For applets compute it

in the init() method.

 Exception creation can be expensive because it has to create the full stack trace. The stack trace is

obviously useful if you are planning to log or display the exception to the user. But if you are using your
exception to just control the flow, which is not recommended, then throw an exception, which is pre-
created. An efficient way to do this is to declare a public static final Exception in your exception class
itself.

 Avoid using System.out.println and use logging frameworks like Log4J etc, which uses I/O buffers

(Refer Q21 in Java section).

 Minimise calls to Date, Calendar, etc related classes.

 Minimise JNI calls in your code.

Note: Set performance requirements in the specifications, include a performance focus in the analysis and design
and also create a performance test environment.

Q 64: How would you detect and minimise memory leaks in Java? MI BP
A 64: In Java memory leaks are caused by poor program design where object references are long lived and the garbage

collector is unable to reclaim those objects.

Detecting memory leaks:

 Use tools like JProbe, OptimizeIt etc to detect memory leaks.

 Use operating system process monitors like task manager on NT systems, ps, vmstat, iostat, netstat etc on

UNIX systems.

 Write your own utility class with the help of totalMemory() and freeMemory() methods in the Java Runtime
class. Place these calls in your code strategically for pre and post memory recording where you suspect to be
causing memory leaks. An even better approach than a utility class is using dynamic proxies (Refer Q11 in
How would you go about section…) or Aspect Oriented Programming (AOP) for pre and post memory
recording where you have the control of activating memory measurement only when needed. (Refer Q3 – Q5
in Emerging Technologies/Frameworks section).

Minimising memory leaks:

In Java, typically memory leak occurs when an object of a longer lifecycle has a reference to objects of a short life cycle.
This prevents the objects with short life cycle being garbage collected. The developer must remember to remove the references
to the short-lived objects from the long-lived objects. Objects with the same life cycle do not cause any issues because the
garbage collector is smart enough to deal with the circular references (Refer Q33 in Java section).

 Design applications with an object’s life cycle in mind, instead of relying on the clever features of the JVM.

Letting go of the object’s reference in one’s own class as soon as possible can mitigate memory problems.
Example: myRef = null;

 Unreachable collection objects can magnify a memory leak problem. In Java it is easy to let go of an entire

collection by setting the root of the collection to null. The garbage collector will reclaim all the objects (unless
some objects are needed elsewhere).

 Use weak references (Refer Q32 in Java section) if you are the only one using it. The WeakHashMap is a

combination of HashMap and WeakReference. This class can be used for programming problems where you
need to have a HashMap of information, but you would like that information to be garbage collected if you are
the only one referencing it.

Java

52

 Free native system resources like AWT frame, files, JNI etc when finished with them. Example: Frame,
Dialog, and Graphics classes require that the method dispose() be called on them when they are no longer
used, to free up the system resources they reserve.

Q 65: Why does the JVM crash with a core dump or a Dr.Watson error? MI
A 65: Any problem in pure Java code throws a Java exception or error. Java exceptions or errors will not cause a core

dump (on UNIX systems) or a Dr.Watson error (on WIN32systems). Any serious Java problem will result in an
OutOfMemoryError thrown by the JVM with the stack trace and consequently JVM will exit. These Java stack
traces are very useful for identifying the cause for an abnormal exit of the JVM. So is there a way to know that
OutOfMemoryError is about to occur? The Java JDK 1.5 has a package called java.lang.management which has
useful JMX beans that we can use to manage the JVM. One of these beans is the MemoryMXBean.

An OutOfMemoryError can be thrown due to one of the following 4 reasons:

 JVM may have a memory leak due to a bug in its internal heap management implementation. But this is highly

unlikely because JVMs are well tested for this.

 The application may not have enough heap memory allocated for its running. You can allocate more JVM
heap size (with –Xmx parameter to the JVM) or decrease the amount of memory your application takes to
overcome this. To increase the heap space:

Java -Xms1024M -Xmx1024M

Care should be taken not to make the –Xmx value too large because it can slow down your application. The
secret is to make the maximum heap size value the right size.

 Another not so prevalent cause is the running out of a memory area called the “perm” which sits next to the

heap. All the binary code of currently running classes is archived in the “perm” area. The ‘perm’ area is
important if your application or any of the third party jar files you use dynamically generate classes. For
example: “perm” space is consumed when XSLT templates are dynamically compiled into classes, J2EE
application servers, JasperReports, JAXB etc use Java reflection to dynamically generate classes and/or
large amount of classes in your application. To increase perm space:

Java -XX:PermSize=256M -XX:MaxPermSize=256M

 The fourth and the most common reason is that you may have a memory leak in your application as

discussed in Q64 in Java section.

[Good read/reference: “Know Your Worst Friend, the Garbage Collector” http://java.sys-
con.com/read/84695.htm by Romain Guy]

So why does the JVM crash with a core dump or Dr.Watson error?

Both the core dump on UNIX operating system and Dr.Watson error on WIN32 systems mean the same thing. The
JVM is a process like any other and when a process crashes a core dump is created. A core dump is a memory
map of a running process. This can happen due to one of the following reasons:

 Using JNI (Java Native Interface) code, which has a fatal bug in its native code. Example: using Oracle OCI

drivers, which are written partially in native code or jdbc-odbc bridge drivers, which are written in non Java
code. Using 100% pure Java drivers (communicates directly with the database instead of through client
software utilizing the JNI) instead of native drivers can solve this problem. We can use Oracle thin driver,
which is a 100% pure Java driver.

 The operating system on which your JVM is running might require a patch or a service pack.

 The JVM implementation you are using may have a bug in translating system resources like threads, file

handles, sockets etc from the platform neutral Java byte code into platform specific operations. If this JVM’s
translated native code performs an illegal operation then the operating system will instantly kill the
process and mostly will generate a core dump file, which is a hexadecimal file indicating program’s state
in memory at the time of error. The core dump files are generated by the operating system in response to
certain signals. Operating system signals are responsible for notifying certain events to its threads and
processes. The JVM can also intercept certain signals like SIGQUIT which is kill -3 < process id > from the
operating system and it responds to this signal by printing out a Java stack trace and then continue to run.

Java

53

The JVM continues to run because the JVM has a special built-in debug routine, which will trap the signal -3.
On the other hand signals like SIGSTOP (kill -23 <process id>) and SIGKILL (kill -9 <process id>) will cause
the JVM process to stop or die. The following JVM argument will indicate JVM not to pause on SIGQUIT
signal from the operating system.

Java –Xsqnopause

Java – Personal

Q 66: Did you have to use any design patterns in your Java project? DP
A 66: Yes. Refer Q10 [Strategy], Q14 [Iterator], Q20 [Decorator], Q31 [Visitor], Q45 [Singleton], Q46 [Factory],

Q50 [Command], and Q54 [MVC] in Java section and Q11 in How would you go about… section. Note: Learning
of other patterns recommended (Gang of Four Design Patterns).

Resource: http://www.patterndepot.com/put/8/JavaPatterns.htm.

Why use design patterns, you may ask (Refer Q5 in Enterprise section). Design patterns are worthy of mention in
your CV and interview. Design patterns have a number of advantages:

 Capture design experience from the past.
 Promote reuse without having to reinvent the wheel.
 Define the system structure better.
 Provide a common design vocabulary.

Some advice if you are just starting on your design pattern journey:

 If you are not familiar with UML, now is the time. UML is commonly used to describe patterns in pattern

catalogues, including class diagrams, sequence diagrams etc. (Refer Q106 - Q109 in Enterprise section).

 When using patterns, it is important to define a naming convention. It will be much easier to manage a project
as it grows to identify exactly what role an object plays with the help of a naming convention e.g.
AccountFacilityBusinessDelegate, AccountFacilityFactory, AccountFacilityValueObject, AccountDecorator,
AccountVisitor, AccountTransferObject (or AccountFacilityVO or AccountTO).

 Make a list of requirements that you will be addressing and then try to identify relevant patterns that are
applicable.

Q 67: Tell me about yourself or about some of the recent projects you have worked with? What do you consider your

most significant achievement? Why do you think you are qualified for this position? Why should we hire you and
what kind of contributions will you make?

A 67: [Hint:] Pick your recent projects and brief on it. Also is imperative that during your briefing, you demonstrate how
you applied your skills and knowledge in some of the following areas:

 Design concepts and design patterns: How you understand and applied them.
 Performance and memory issues: How you identified and fixed them.
 Exception handling and best practices: How you understand and applied them.
 Multi-threading and concurrent access: How you identified and fixed them.

Some of the questions in this section can help you prepare your answers by relating them to your current or past
work experience. For example:

 Design Concepts: Refer Q5, Q6, Q7, Q8, Q9 etc
 Design Patterns: Refer Q10, Q14, Q20, Q31, Q45, Q46, Q50 etc [Refer Q11 in How would you go about…?

section]
 Performance issues: Refer Q21, Q63 etc
 Memory issues: Refer Q32, Q64, Q65 etc
 Exception Handling: Refer Q34, Q35 etc
 Multi-threading (Concurrency issues): Refer Q29, Q40 etc

Java

54

Demonstrating your knowledge in the above mentioned areas will improve your chances of being successful in
your Java/J2EE interviews. 90% of the interview questions are asked based on your own resume. So in my view it
is also very beneficial to mention how you demonstrated your knowledge/skills by stepping through a recent
project on your resume.

The two other areas, which I have not mentioned in this section, which are also very vital, are transactions and
security. These two areas will be covered in the next section, which is the Enterprise section (J2EE, JDBC, EJB,
JMS, SQL, XML etc).

Even if you have not applied these skills knowingly or you have not applied them at all, just demonstrating that you
have the knowledge and an appreciation will help you improve your chances in the interviews. Also mention any
long hours worked to meet the deadline, working under pressure, fixing important issues like performance issues,
running out of memory issues etc.

Q 68: Why are you leaving your current position?
A 68: [Hint]

 Do not criticize your previous employer or coworkers or sound too opportunistic.
 It is fine to mention a major problem like a buy out, budget constraints, merger or liquidation.
 You may also say that your chance to make a contribution is very low due to company wide changes or

looking for a more challenging senior or designer role.

Q 69: What do you like and/or dislike most about your current and/or last position?
A 69: [Hint]

The interviewer is trying to find the compatibility with the open position. So

Do not say anything like:

 You dislike overtime.
 You dislike management or coworkers etc.

It is safe to say:

 You like challenges.
 Opportunity to grow into design, architecture, performance tuning etc.
 You dislike frustrating situations like identifying a memory leak problem or a complex transactional or a

concurrency issue. You want to get on top of it as soon as possible.

Q 70: How do you handle pressure? Do you like or dislike these situations?
A 70: [Hint]

These questions could mean that the open position is pressure-packed and may be out of control. Know what you
are getting into. If you do perform well under stress then give a descriptive example. High achievers tend to
perform well in pressure situations.

Q 71: What are your strengths and weaknesses? Can you describe a situation where you took initiative? Can you

describe a situation where you applied your problem solving skills?
A 71: [Hint]

Strengths:

 Taking initiatives and being pro-active: You can illustrate how you took initiative to fix a transactional issue,

a performance problem or a memory leak problem.

 Design skills: You can illustrate how you designed a particular application using OO concepts.

 Problem solving skills: Explain how you will break a complex problem into more manageable sub-sections
and then apply brain storming and analytical skills to solve the complex problem. Illustrate how you went
about identifying a scalability issue or a memory leak problem.

Java

55

 Communication skills: Illustrate that you can communicate effectively with all the team members, business

analysts, users, testers, stake holders etc.

 Ability to work in a team environment as well as independently: Illustrate that you are technically sound
to work independently as well as have the interpersonal skills to fit into any team environment.

 Hard working, honest, and conscientious etc are the adjectives to describe you.

Weaknesses:

Select a trait and come up with a solution to overcome your weakness. Stay away from personal qualities and
concentrate more on professional traits for example:

 I pride myself on being an attention to detail guy but sometimes miss small details. So I am working on

applying the 80/20 principle to manage time and details. Spend 80% of my effort and time on 20% of the
tasks, which are critical and important to the task at hand.

 Some times when there is a technical issue or a problem I tend to work continuously until I fix it without having

a break. But what I have noticed and am trying to practise is that taking a break away from the problem and
thinking outside the square will assist you in identifying the root cause of the problem sooner.

Q 72: What are your career goals? Where do you see yourself in 5-10 years?
A 72: [Hint] Be realistic. For example

 Next 2-3 years to become a senior developer or a team lead.
 Next 3-5 years to become a solution designer or an architect.

Note: For Q66 – Q72 tailor your answers to the job. Also be prepared for questions like:

 What was the last Java related book or article you read? [Hint]

 Mastering EJB by Ed Roman.
 EJB design patterns by Floyd Marinescu.
 Bitter Java by Bruce Tate.
 Thinking in Java by Bruce Eckel.

 Which Java related website(s) do you use to keep your knowledge up to date? [Hint]

 http://www.theserverside.com
 http://www.javaworld.com
 http://www-136.ibm.com/developerworks/Java
 http://www.precisejava.com
 http://www.allapplabs.com
 http://java.sun.com
 http://www.martinfowler.com
 http://www.ambysoft.com

 What past accomplishments gave you satisfaction? What makes you want to work hard? [Hint]

 Material rewards such as salary, perks, benefits etc naturally come into play but focus on your achievements or

accomplishments than on rewards.

 Do you have any role models in software development? [Hint]

 Scott W. Ambler, Martin Fowler, Ed Roman, Floyd Marinescu, Grady Booch etc.

 Why do you want to work for us? (Research the company prior to the interview).

Java

56

Java – Key Points

 Java is an object oriented (OO) language, which has built in support for multi-threading, socket communication,

automatic memory management (i.e. garbage collection) and also has better portability than other languages across
operating systems.

 Java class loaders are hierarchical and use a delegation model. The classes loaded by a child class loader have

visibility into classes loaded by its parents up the hierarchy but the reverse is not true.

 Java does not support multiple implementation inheritance but supports multiple interface inheritance.

 Polymorphism, inheritance and encapsulation are the 3 pillar of an object-oriented language.

 Code reuse can be achieved through either inheritance (“is a” relationship) or object composition (“has a”

relationship). Favour object composition over inheritance.

 When using implementation inheritance, make sure that the subclasses depend only on the behaviour of the

superclass, not the actual implementation. An abstract base class usually provides an implementation inheritance.

 Favour interface inheritance to implementation inheritance because it promotes the deign concept of coding to

interface and reduces coupling. The interface inheritance can achieve code reuse through object composition.

 Design by contract specifies the obligations of a calling-method and called-method to each other using pre-

conditions, post-conditions and class invariants.

 When using Java collection API, prefer using ArrayList or HashMap as opposed to Vector or Hashtable to avoid any

synchronization overhead. The ArrayList or HashMap can be externally synchronized for concurrent access by
multiple threads.

 Set the initial capacity of a collection appropriately and program in terms of interfaces as opposed to

implementations.

 When providing a user defined key class for storing objects in HashMap, you should override equals(), and

hashCode() methods from the Object class.

 String class is immutable and StringBuffer and StringBuilder classes are mutable. So it is more efficient to use a

StringBuffer or a StringBuilder as opposed to a String in a computation intensive situations (ie. in for, while loops).

 Serialization is a process of writing an object to a file or a stream. Transient variables cannot be serialized.

 Java I/O performance can be improved by using buffering, minimising access to the underlying hard disk and

operating systems. Use the NIO package for performance enhancing features like non-blocking I/O operation, buffers
to hold data, and memory mapping of files.

 Each time an object is created in Java it goes into the area of memory known as heap. The primitive variables are

allocated in the stack if they are local method variables and in the heap if they are class member variables.

 Threads share the heap spaces so it is not thread-safe and the threads have their own stack space, which is

thread-safe.

 The garbage collection cannot be forced, but you can nicely ask the garbage collector to collect garbage.

 There two types of exceptions checked (ie compiler checked) and unchecked (Runtime Exceptions). It is not

advisable to catch type Exception.

 A process is an execution of a program (e.g. JVM process) but a thread is a single execution sequence within the

process.

 Threads can be created in Java by either extending the Thread class or implementing the Runnable interface.

Java

57

 In Java each object has a lock and a thread can acquire a lock by using the synchronized key word. The
synchronization key word can be applied in method level (coarse-grained lock) or block level (fine-grained lock
which offers better performance) of code.

 Threads can communicate with each other using wait(), notify(), and notifyAll() methods. This communication

solves the consumer-producer problem.

 Sockets are communication channels, which facilitate inter-process communication.

 Swing uses the MVC paradigm to provide loose coupling and action architecture to implement a shared behaviour

between two or more user interface components.

 Swing components should be accessed through an event-dispatching thread. There is a way to access the Swing

event-dispatching thread from outside event-handling or drawing code, is using SwingUtilities’ invokeLater() and
invokeAndWait() methods.

 A signed applet can become a trusted applet, which can work outside the sandbox.

 In Java typically memory leak occurs when an object of longer life cycle has a reference to objects of a short life

cycle.

 You can improve performance in Java by :

1. Pooling your valuable resources like threads, database and socket connections.
2. Optimizing your I/O operations.
3. Minimising network overheads, calls to Date, Calendar related classes, use of “casting” or runtime type

checking like “instanceof” in frequently executed methods/loops, JNI calls, etc
4. Managing your objects efficiently by caching or recycling them without having to rely on garbage collection.
5. Using a StringBuffer as opposed to String and ArrayList or HashMap as oppose to Vector or Hashtable
6. Applying multi-threading where applicable.
7. Minimise any potential memory leaks.

 Finally, very briefly familiarise yourself with some of the key design patterns like:

1. Decorator design pattern: used by Java I/O API. A popular design pattern.
2. Reactor design pattern/Observer design pattern: used by Java NIO API.
3. Visitor design pattern: to avoid instanceof and typecast constructs.
4. Factory method/abstract factory design pattern: popular pattern, which gets frequently asked in interviews.
5. Singleton pattern: popular pattern, which gets frequently asked in interviews.
6. Composite design pattern: used by GUI components and also a popular design pattern
7. MVC design pattern/architecture: used by Swing components and also a popular pattern.
8. Command pattern: used by Swing action architecture and also a popular design pattern.
9. Strategy design pattern: A popular design pattern used by AWT layout managers.

Refer Q11 in “How would you go about…” section for a detailed discussion and code samples on GOF (Gang of Four)
design patterns.

Recommended reading on design patterns:

 The famous Gang of Four book: Design Patterns, Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(Addiso-Wesley Publishing Co., 1995; ISBN: 0201633612).

Java

58

Tips:

 Try to find out the needs of the project in which you will be working and the needs of the people within the

project.

 80% of the interview questions are based on your own resume.

 Where possible briefly demonstrate how you applied your skills/knowledge in the key areas [design

concepts, transactional issues, performance issues, memory leaks etc] as described in this book. Find the
right time to raise questions and answer those questions to show your strength.

 Be honest to answer technical questions, you are not expected to remember everything (for example you

might know a few design patterns but not all of them etc). If you have not used a design pattern in question,
request the interviewer, if you could describe a different design pattern.

 Do not be critical, focus on what you can do. Also try to be humorous to show your smartness.

 Do not act superior.

Enterprise Java

59

SECTION TWO

Enterprise Java – Interview questions & answers

 Specification Fundamentals SF
 Design Concepts DC
 Design Patterns DP
 Concurrency Issues CI
 Performance Issues PI
 Memory Issues MI
 Exception Handling EH
 Transactional Issues TI
 Security SE
 Scalability Issues SI
 Best Practices BP
 Coding1 CO

Popular Questions: Q02, Q03, Q10, Q16, Q19, Q20, Q24, Q25, Q30, Q31, Q36, Q39, Q40, Q45, Q46, Q48, Q49, Q53, Q58, Q63, Q64,
Q65, Q66, Q71, Q72, Q73, Q76, Q77, Q78, Q79, Q83, Q84, Q85, Q86, Q87, Q89, Q90, Q91, Q93, Q96, Q97, Q98, Q100, Q102, Q106,
Q107, Q110, Q123, Q124, Q125, Q129, Q131, Q136.

1 Unlike other key areas, the CO is not always shown against the question but shown above the actual subsection of relevance within a
question.

K
E
Y

A
R
E
A
S

Enterprise Java

60

Enterprise - J2EE

Q 01: What is J2EE? What are J2EE components and services? SF
A 01: J2EE (Java 2 Enterprise Edition) is an environment for developing and deploying enterprise applications. The

J2EE platform consists of J2EE components, services, Application Programming Interfaces (APIs) and protocols
that provide the functionality for developing multi-tiered and distributed Web based applications.

W e b
S e r v e r

H T M L

C S S

J 2 E E P h y s ic a l T ie r s , C o n ta in e r s , C o m p o n e n ts , S e r v ic e s & A P Is

C lie n t T ie r A p p lic a t io n T ie r (M id d le T ie r) D a ta (E IS) T ie r

J 2 E E A p p lic a t io n S e r v e r

RM
I /

 II
OP

(X) H T M L ,
X M L

(B r o w s e r)

A p p le t

C lie n t A p p lic a t io n
(s ta n d a lo n e J a v a

p r o g r a m)

H T T P (S)

H T T P (S)

R M I/ I IO P

R D B M S

J a v a
A p p l ic a t io n

C o r b a S e r v e r

M e s s a g in g

D ire c to ry
S e rv ic e

J D B C

J a v a M a il

R M I

J M S

IIO P

J N D I

C lie n t
A p p lic a t io n S e r v e r D a ta b a s e S e r v e r

F ire w a ll F ire w a ll

W e b S e r v e r

in te rn e t

D M Z

O th e r S e r v ic e s + A P I s p r o v id e d b y s e r v e r / c o n ta in e r :
S e c u r it y (S S L , A C L , J A A S ,X .5 0 9)
t r a n s a c t io n s , th r e a d in g , R e s o u r c e p o o l in g (E g : C o n n e c t io n p o o l in g) e t c
,F a u lt T o le r a n c e , L o a d B a la n c in g , c lu s t e r in g
M o n ito r in g , A u d it in g , L o g g in g e t c
m o r e

W e b C o n ta in e r

S e rv le ts J S P

T a g
lib r a ry

RM
I/I

IO
P

JN
DI

JT
A

JD
BC

JM
S

Ja
va

M
ail

JA
F

E J B C o n ta in e r

S e s s io n B e a n s E n t ity B e a n s M e s s a g e d r iv e n b e a n s

RM
I/I

IO
P

JN
DI

JT
A

JD
BC

JM
S

Ja
va

M
ail

JA
F

A J2EE component is a self-contained functional software unit that is assembled into a J2EE application with its
related classes and files and communicates with other components. The J2EE specification defines the following
J2EE components:

Component type Components Packaged as
Applet applets JAR (Java ARchive)
Application client Client side Java codes. JAR (Java ARchive)
Web component JSP, Servlet WAR (Web ARchive)
Enterprise JavaBeans Session beans, Entity beans, Message driven beans JAR (EJB Archive)
Enterprise application WAR, JAR, etc EAR (Enterprise ARchive)
Resource adapters Resource adapters RAR (Resource Adapter ARchive)

So what is the difference between a component and a service you may ask? A component is an application
level software unit as shown in the table above. All the J2EE components depend on the container for the system
level support like transactions, security, pooling, life cycle management, threading etc. A service is a component

Enterprise Java

61

that can be used remotely through a remote interface either synchronously or asynchronously (e.g. Web service,
messaging system, sockets, RPC etc).

Containers (Web & EJB containers) are the interface between a J2EE component and the low level platform
specific functionality that supports J2EE components. Before a Web, enterprise bean (EJB), or application client
component can be executed, it must be assembled into a J2EE module (jar, war, and/or ear) and deployed into its
container.

A J2EE server provides system level support services such us security, transaction management, JNDI (Java
Naming and Directory Interface) lookups, remote access etc. J2EE architecture provides configurable and non-
configurable services. The configurable service enables the J2EE components within the same J2EE application
to behave differently based on where they are deployed. For example the security settings can be different for the
same J2EE application in two different production environments. The non-configurable services include enterprise
bean (EJB) and servlet life cycle management, resource pooling etc.

Protocols are used for access to Internet services. J2EE platform supports HTTP (HyperText Transfer Protocol),
TCP/IP (Transmission Control Protocol / Internet Protocol), RMI (Remote Method Invocation), SOAP (Simple
Object Access Protocol) and SSL (Secured Socket Layer) protocol.

The J2EE API can be summarised as follows:

J2EE technology category API (Application Program Interface)
Component model technology Java Servlet, JavaServer Pages(JSP), Enterprise JavaBeans(EJB).

Web services technology

JAXP (Java API for XML Processing), JAXR (Java API for XML Registries), SAAJ (SOAP
with attachment API for Java), JAX-RPC (Java API for XML-based RPC), JAX-WS (Java
API for XML-based Web Services).

Other

JDBC (Java Database Connectivity), JNDI (Java Naming and Directory Interface), JMS
(Java Messaging Service), JCA (J2EE Connector Architecture), JTA (Java Transaction
API), JavaMail, JAF (JavaBeans Activation Framework – used by JavaMail), JAAS (Java
Authentication and Authorization Service), JMX (Java Management eXtenstions).

Q 02: Explain the J2EE 3-tier or n-tier architecture? SF DC
A 02: This is a very commonly asked question. Be prepared to draw some diagrams on the board. The J2EE platform is

a multi-tiered system. A tier is a logical or functional partitioning of a system.

2 – tier system 3 – tier system

2-T ier (C lien t/S erv er)

U serIn te rface
/d isp lay Log ic

B us iness
log ic

D atabase
log ic

U serIn te rface
/d isp lay Log ic

B us iness
log ic

D atabase
log ic

C lien t M /C 1 C lien t M /C 2

D atabase

B us iness Log ic
D atabase log ic

D ata

When the developers are not disciplined, The
display logic, business logic and database
logic are muddled up and/or duplicated in a 2-
tier client server system.

3-T ier (or n -tier)

UserInterface
/d isplay logic

UserInterface
/d isplay logic

Client M /C 1 C lient M /C 2

M iddle-tier server

Database

Data

Business Logic

Database Logic

The advantages of the multi-tier architecture are:

 Forced separation of user interface logic and business logic.
 Business logic sits on small number of centralized machines (may be

just one).
 Easy to maintain, to manage, to scale, loosely coupled etc.

Each tier is assigned a unique responsibility in a 3-tier system. Each tier is logically separated and loosely coupled
from each other, and may be distributed.

Enterprise Java

62

Client tier represents Web browser, a Java or other application, Applet, WAP phone etc. The client tier makes
requests to the Web server who will be serving the request by either returning static content if it is present in the
Web server or forwards the request to either Servlet or JSP in the application server for either static or dynamic
content.

Presentation tier encapsulates the presentation logic required to serve clients. A Servlet or JSP in the
presentation tier intercepts client requests, manages logons, sessions, accesses the business services, and finally
constructs a response, which gets delivered to client.

Business tier provides the business services. This tier contains the business logic and the business data. All the
business logic is centralised into this tier as opposed to 2-tier systems where the business logic is scattered
between the front end and the backend. The benefit of having a centralised business tier is that same business
logic can support different types of clients like browser, WAP, other stand-alone applications etc.

Integration tier is responsible for communicating with external resources such as databases, legacy systems,
ERP systems, messaging systems like MQSeries etc. The components in this tier use JDBC, JMS, J2EE
Connector Architecture (JCA) and some proprietary middleware to access the resource tier.

Resource tier is the external resource such as a database, ERP system, Mainframe system etc responsible for
storing the data. This tier is also known as Data Tier or EIS (Enterprise Information System) Tier.

L o g i c a l o r
F u n c t i o n a l T i e r s

H i g h L e v e l
T i e r s

C l ie n t

C l i e n t T i e r

W e b S e r v e r

A p p l i c a t i o n S e r v e r

M i d d l e T i e r

R D B M S
X M L

D a t a T i e r

C l i e n t T i e r
A p p le t s , H T M L , W M L , J a v a S c r ip t ,

A p p l i c a t io n C l ie n t s e t c

P r e s e n t a t i o n T i e r

R e s o u r c e T i e r
D a t a b a s e s , E R P & C R M s y s t e m s ,

L e g a c y S y s t e m s e t c

B u s i n e s s T i e r
E J B , J a v a C la s s e s , B u s in e s s

O b je c t s e t c

H T M L , C S S , G I F F i le s e t c
(s t a t i c c o n t e n t)

J S P , S e r v le t s , T a g l ib r a r y a n d
o t h e r U I e le m e n t s (C S S , G I F ,

e t c)

I n t e g r a t i o n T i e r
J M S , J D B C , C o n n e c t o r s (J C A) ,

a n d L e g a c y

J2
EE

 p
at

te
rn

s
ap

pl
y

J 2 E E T i e r s

Note: On a high level J2EE can be construed as a 3-tier system consisting of Client Tier, Middle Tier (or
Application Tier) and Data Tier. But logically or functionally J2EE is a multi-tier (or n-tier) platform.

The advantages of a 3-tiered or n-tiered application: 3-tier or multi-tier architectures force separation among
presentation logic, business logic and database logic. Let us look at some of the key benefits:

 Manageability: Each tier can be monitored, tuned and upgraded independently and different people can have

clearly defined responsibilities.

Enterprise Java

63

 Scalability: More hardware can be added and allows clustering (i.e. horizontal scaling).

 Maintainability: Changes and upgrades can be performed without affecting other components.

 Availability: Clustering and load balancing can provide availability.

 Extensibility: Additional features can be easily added.

Q 03: Explain MVC architecture relating to J2EE? DC DP
A 03: This is also a very popular interview question. MVC stands for Model-View-Controller architecture. It divides the

functionality of displaying and maintaining of the data to minimise the degree of coupling (i.e. promotes loose
coupling) between components.

J2E E M V C (M odel-V iew -C ontro ller)

M odel
(E ntitiy B eans (E JB), S ession B eans

(E JB), P la in Java C lasses)
E ncapsu la tes business log ic and
app lica tion sta te .

V iew
(JS P , JavaB eans , S W IN G ,

C usto m Tag s, e tc)
R enders the m ode l & has
on ly d isp lay log ic.
Sends user actions to the
con tro lle r
A llow s con tro lle r to se lect a
v iew .

C ontro ller
(Serv let, S tru ts A ction e tc)

con tro ls app lica tion behaviou r
M aps user ac tions to m ode l.
se lec ts v iew fo r response.
usua lly one fo r each
functiona lity .

ge
t D

ata
 to

 di
sp

lay

U ser A ctio n (eg : subm itting a
fo rm , c lick ing a bu tton e tc)

V iew selection (eg: se lecting the next
JS P page to d isp lay as a response)

state change

N ote: T ypical M V C arch itecture is show n above. V ariations are possib le (eg: M odel 1 vs M odel 2
M V C)

Browser

da tabase

C on tro lle r
S ervle t

View

JS P

M od el
EJB or P la in Java

class

1 . R eq uest
2. instantiates

3 . read /update
data

4.
re

dir
ec

t

6. R espo nse

C lien t T ier M idd leT ier (A pp lication T ier) D ata T ier

5

A model represents the core business logic and state. A model commonly maps to data in the database and will
also contain core business logic.

A View renders the contents of a model. A view accesses the data from the model and adds display logic to
present the data.

A Controller acts as the glue between a model and a view. A controller delegates the request to the model for
application logic and state and also centralises the logic for dispatching the request to the next view based on the
input parameters from the client and the application state. A controller also decouples JSP pages and the Servlet
by handling the view selection.

Enterprise Java

64

Q 04: How to package a module, which is, shared by both the WEB and the EJB modules? SF
A 04: Package the modules shared by both WEB and EJB modules as dependency jar files. Define the Class-Path:

property in the MANIFEST.MF file in the EJB jar and the Web war files to refer to the shared modules. [Refer Q7
in Enterprise section for diagram: J2EE deployment structure].

The MANIFEST.MF files in the EJB jar and WEB war modules should look like:

Manifest-Version: 1.0
Created-By: Apache Ant 1.5
Class-Path: myAppsUtil.jar

Q 05: Why use design patterns in a J2EE application? DP
A 05:

 They have been proven. Patterns reflect the experience and knowledge of developers who have successfully
used these patterns in their own work. It lets you leverage the collective experience of the development
community.

Example Session facade and value object patterns evolved from performance problems experienced due to
multiple network calls to the EJB tier from the WEB tier. Fast lane reader and Data Access Object patterns
exist for improving database access performance. The flyweight pattern improves application performance
through object reuse (which minimises the overhead such as memory allocation, garbage collection etc).

 They provide common vocabulary. Patterns provide software designers with a common vocabulary. Ideas

can be conveyed to developers using this common vocabulary and format.

Example Should we use a Data Access Object (DAO)? How about using a Business Delegate? Should we
use Value Objects to reduce network overhead? Etc.

Q 06: What is the difference between a Web server and an application server? SF
A 06:

Web Server Application Server
Supports HTTP protocol. When the Web server receives
an HTTP request, it responds with an HTTP response,
such as sending back an HTML page (static content) or
delegates the dynamic response generation to some
other program such as CGI scripts or Servlets or JSPs in
the application server.

Exposes business logic and dynamic content to the client
through various protocols such as HTTP, TCP/IP, IIOP, JRMP etc.

Uses various scalability and fault-tolerance techniques. Uses various scalability and fault-tolerance techniques. In addition
provides resource pooling, component life cycle management,
transaction management, messaging, security etc.

Provides services for components like Web container for servlet
components and EJB container for EJB components.

With the advent of XML Web services the line between application servers and Web servers is not clear-cut. By passing XML
documents between request and response the Web server can behave like an application server.

Q 07: What are ear, war and jar files? What are J2EE Deployment Descriptors? SF
A 07: ear, war and jar are standard application deployment archive files. Since they are a standard, any application

server (at least in theory) will know how to unpack and deploy them.

An EAR file is a standard JAR file with an “.ear” extension, named from Enterprise ARchive file. A J2EE
application with all of its modules is delivered in EAR file. JAR files can’t have other JAR files. But EAR and WAR
(Web ARchive) files can have JAR files.

An EAR file contains all the JARs and WARs belonging to an application. JAR files contain the EJB classes and
WAR files contain the Web components (JSPs, static content (HTML, CSS, GIF etc), Servlets etc.). The J2EE
application client's class files are also stored in a JAR file. EARs, JARs, and WARs all contain an XML-based
deployment descriptor.

Enterprise Java

65

MyApps.ear

log4j.jar (3rd party jars)

META-INF
application.xml

deployment descriptor

MANIFEST.MF
Manifest-Version: 1.0
Craeted-By: Apache Ant

MyAppsCommon.jar , MyAppsUtil.jar
(shared by both EJB and Web modules)

MyAppsEJB.jar

MyAppsWeb.war

MANIFEST.MF
class-path: log4j.jar MyAppsCommon.jar MyAppsUtil.jar

ejb-jar.xml
deployment descriptor

META-INF

class files, properties files,configuration files etc

class files, properties files,configuration files etc

ejb classes , non-ejb class etc

META-INF

WEB-INF

JSP, HTML, CSS, GIF (can have
sub-folders)

MANIFEST.MF
class-path: log4j.jar MyAppsCommon.jar MyAppsUtil.jar

web.xml
deployment descriptor

lib

classes

struts.jar, crimson.jar
3rd party jar files

class files

J2EE deployment structure (ear, war, jar)

public
directory
(document
root)

private
directory

Deployment Descriptors

A deployment descriptor is an XML based text file with a “.xml” extension that describes a component's
deployment settings. A J2EE application and each of its modules has its own deployment descriptor. Pay attention
to elements marked in bold in the sample deployment descriptor files shown below.

 application.xml: is a standard J2EE deployment descriptor, which includes the following structural

information: EJB jar modules, WEB war modules, <security-role> etc. Also since EJB jar modules are
packaged as jars the same way dependency libraries like log4j.jar, commonUtil.jar etc are packaged, the
application.xml descriptor will distinguish between these two jar files by explicitly specifying the EJB jar
modules.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN"
 "http://java.sun.com/j2ee/dtds/application_1_2.dtd">
<application id="Application_ID">
 <display-name>MyApps</display-name>
 <module id="EjbModule_1">
 <ejb>MyAppsEJB.jar</ejb>
 </module>

 <module id="WebModule_1">
 <web>

Enterprise Java

66

 <web-uri>MyAppsWeb.war</web-uri>
 <context-root>myAppsWeb</context-root>
 </web>
 </module>

 <security-role id="SecurityRole_1">
 <description>Management position</description>
 <role-name>managger</role-name>
 </security-role>
</application>

 ejb-jar.xml: is a standard deployment descriptor for an EJB module.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN"
 "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">
<ejb-jar id="ejb-jar_ID">
 <display-name>MyAppsEJB</display-name>

 <enterprise-beans>
 <session id="ContentService">
 <ejb-name>ContentService</ejb-name>
 <home>ejb.ContentServiceHome</home>
 <remote>ejb.ContentService</remote>
 <ejb-class>ejb.ContentServiceBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Bean</transaction-type>
 </session>

 <entity>
 <ejb-name>Bid</ejb-name>
 <home>ejb.BidHome</home>
 <remote>ejb.Bid</remote>
 <ejb-class>ejb.BidBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>ejb.BidPK</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-field><field-name>bid</field-name></cmp-field>
 <cmp-field><field-name>bidder</field-name></cmp-field>
 <cmp-field><field-name>bidDate</field-name></cmp-field>
 <cmp-field><field-name>id</field-name></cmp-field>
 </entity>
 </enterprise-beans>

 <!-- OPTIONAL -->

 <assembly-descriptor>

 <!-- OPTIONAL, can be many -->
 <security-role>
 <description>
 Employee is allowed to ...
 </description>
 <role-name>employee</role-name>
 </security-role>

 <!-- OPTIONAL. Can be many -->
 <method-permission>
 <!-- Define role name in "security-role" -->
 <!-- Must be one or more -->
 <role-name>employee</role-name>
 <!-- Must be one or more -->
 <method>
 <ejb-name>ContentService</ejb-name>
 <!-- * = all methods -->
 <method-name>*</method-name>
 </method>

 <method>
 <ejb-name>Bid</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
 </method-permission>

Enterprise Java

67

 <!-- OPTIONAL, can be many. How the container is to manage
 transactions when calling an EJB's business methods -->

 <container-transaction>
 <!-- Can specify many methods at once here -->
 <method>
 <ejb-name>Bid</ejb-name>
 <method-name>*</method-name>
 </method>
 <!-- NotSupported|Supports|Required|RequiresNew|Mandatory|Never -->
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

</ejb-jar>

 web.xml: is a standard deployment descriptor for a WEB module.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>
 <display-name>myWebApplication</display-name>
 <context-param>
 <param-name>GlobalContext.ClassName</param-name>
 <param-value>web.GlobalContext</param-value>
 </context-param>

 <servlet>
 <servlet-name>MyWebController</servlet-name>
 <servlet-class>web.MyWebController</servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/config/myConfig.xml</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>MyWebController</servlet-name>
 <url-pattern>/execute/*</url-pattern>
 </servlet-mapping>

 <error-page>
 <error-code>400</error-code>
 <location>/WEB-INF/jsp/errors/myError.jsp</location>
 </error-page>

 <taglib>
 <taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
 <taglib-location>/WEB-INF/lib/taglib/struts/struts-bean.tld</taglib-location>
 </taglib>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Employer</web-resource-name>
 <description></description>
 <url-pattern>/execute/employ</url-pattern>
 <http-method>POST</http-method>
 <http-method>GET</http-method>
 <http-method>PUT</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description></description>
 <role-name>advisor</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>FORM</auth-method>
 <realm-name>FBA</realm-name>
 <form-login-config>
 <form-login-page>/execute/MyLogon</form-login-page>

Enterprise Java

68

 <form-error-page>/execute/MyError</form-error-page>
 </form-login-config>
 </login-config>

 <security-role>
 <description>Advisor</description>
 <role-name>advisor</role-name>
 </security-role>

</web-app>

Q 08: Explain J2EE class loaders? SF
A 08: J2EE application server sample class loader hierarchy is shown below. (Also refer to Q4 in Java section). As per

the diagram the J2EE application specific class loaders are children of the “System –classpath” class loader.
When the parent class loader is above the “System –Classpath” class loader in the hierarchy as shown in the
diagram (i.e. bootstrap class loader or extensions class loader) then child class loaders implicitly have visibility to
the classes loaded by its parents. When a parent class loader is below a “System -Classpath” class loader then
the child class loaders will only have visibility into the classes loaded by its parents only if they are explicitly
specified in a manifest file (MANIFEST.MF) of the child class loader.

Example As per the diagram, if the EJB module MyAppsEJB.jar wants to refer to MyAppsCommon.jar and
MyAppsUtil.jar we need to add the following entry in the MyAppsEJB.jar’s manifest file MANIFEST.MF.

class-path: MyAppsCommon.jar MyAppsUtil.jar

B oo tstrap (JV M)
(r t.j ar , i1 8 .ja r)

E x te n sio n s(JV M)
(lib/ e xt)

S y stem (JV M)
(- clas sp ath)

A pp lica t io n c la ss
lo ad e r (E A R)

A p p lic at io n clas s
loa de r (E A R)

E JB c la ss lo a de r E JB c la ss loa d er

W A R c la ss
lo ad e r

W A R clas s
loa de r

W A R c las s
lo ad e r

E a ch E A R ge ts its
o w n in s ta nc e o f c la s s
loa d e r

A ll the E JB ja rs in a e ar
fi le s h are th e s am e EJ B
cla ss lo a de r.

E a ch W A R g e ts its o w n
ins ta nc e o f c la ss loa d er.
Th e W E B -IN F /l ib l ib ra r ies
a re s pe c if ic to e ac h W A R

N o te : A p p lic at io n ve n d o r's S e rve r c la s s lo ad e r h ie ra rc h y m ig h t s lig h tly va ry
.

J 2 E E a p p lic a tio n se rv e r s a m p le cla s s lo a d e r h ie ra rc h y

M yA p p s .e a r

M yA p p s U til .ja r

M yA p p s C o m m o n .ja r

M yA p p s E JB .ja r

M yA p p s W e b .w a r

This is because the application (EAR) class loader loads the MyAppsCommon.jar and MyAppsUtil.jar. The EJB
class loader loads the MyAppsEJB.jar, which is the child class loader of the application class loader. The WAR
class loader loads the MyAppsWeb.war.

Every J2EE application or EAR gets its own instance of the application class loader. This class loader is
responsible for loading all the dependency jar files, which are shared by both WEB and EJB modules. For
example third party libraries like log4j, utility classes, shared classes or common classes (Exception thrown by an
EJB module should be caught by a WEB module) etc.

The key difference between the EJB and WAR class loader is that all the EJB jars in the application share the
same EJB class loader whereas WAR files get their own class loader. This is because the EJBs have inherent
relationship between one another (ie EJB-EJB communication between EJBs in different applications but hosted
on the same JVM) but the Web modules do not. Every WAR file should be able to have its own WEB-INF/lib third
party libraries and need to be able to load its own version of converted logon.jsp Servlet so each WEB module is
isolated in its own class loader.

Enterprise Java

69

So if two different WEB modules want to use two different versions of the same EJB then we need to have two
different ear files. As was discussed in the Q4 in Java section the class loaders use a delegation model where
the child class loaders delegate the loading up the hierarchy to their parent before trying to load it itself only if the
parent can’t load it. But with regards to WAR class loaders, some application servers provide a setting to turn this
behaviour off (DelegationMode=false). This delegation mode is recommended in the Servlet 2.3 specification.

As a general rule classes should not be deployed higher in the hierarchy than they are supposed to exist. This is because
if you move one class up the hierarchy then you will have to move other classes up the hierarchy as well. This is because
classes loaded by the parent class loader can’t see the classes loaded by its child class loaders (uni-directional bottom-up
visibility).

Enterprise - Servlet

Q 09: What is the difference between CGI and Servlet? SF
Q 09:

Traditional CGI
(Common Gateway Interface)

Java Servlet

Traditional CGI creates a heavy weight process to handle each
http request. N number of copies of the same traditional CGI
programs is copied into memory to serve N number of
requests.

Spawns a lightweight Java thread to handle each http
request. Single copy of a type of servlet but N number of
threads (thread sizes can be configured in an application
server).

In the Model 2 MVC architecture, servlets process requests and select JSP views. So servlets act as controller.
Servlets intercept the incoming HTTP requests from the client (browser) and then dispatch the request to the
business logic model (e.g. EJB, POJO - Plain Old Java Object, JavaBeans etc). Then select the next JSP view for
display and deliver the view to client as the presentation (response). It is the best practice to use Web tier UI
frameworks like Struts, JavaServer Faces etc, which uses proven and tested design patterns.

Q 10: HTTP is a stateless protocol, so how do you maintain state? How do you store user data between requests? SF

PI BP
A 10: This is a commonly asked question as well. You can retain the state information between different page requests

as follows:

HTTP Sessions are the recommended approach. A session identifies the requests that originate from the same
browser during the period of conversation. All the servlets can share the same session. The JSESSIONID is
generated by the server and can be passed to client through cookies, URL re-writing (if cookies are turned off) or
built-in SSL mechanism. Care should be taken to minimize size of objects stored in session and objects
stored in session should be serializable. In a Java servlet the session can be obtained as follows: CO

HttpSession session = request.getSession(); //returns current session or a new session

Sessions can be timed out (configured in web.xml) or manually invalidated.

1. Initial Request[No session] JSESSIONID Name Value

xsder12345 Firstname Peter

xsder12345 LastName Smith

A new session is created on the Server
side with JSESSIONID where
state can be maintained as

name/value pair.

Client
(Browser)

Server

2. JSESSIONID is passed to client with
the response through

cookies or URL re-writing

3. Client uses the JSESSIONID
for subsequent requests

retrieve stored state information for the

supplied JSESSIONID

Session Management

Enterprise Java

70

Hidden Fields on the pages can maintain state and they are not visible on the browser. The server treats both
hidden and non-hidden fields the same way.

<INPUT type=”hidden” name=”Firstname” value=”Peter”>
<INPUT type=”hidden” name=”Lastname” value=”Smith”>

The disadvantage of hidden fields is that they may expose sensitive or private information to others.

URL re-writing will append the state information as a query string to the URL. This should not be used to maintain
private or sensitive information.

Http://MyServer:8080/MyServlet?Firstname=Peter&Lastname=Smith

Cookies: A cookie is a piece of text that a Web server can store on a user’s hard disk. Cookies allow a website to
store information on a user’s machine and later retrieve it. These pieces of information are stored as name-value
pairs. The cookie data moves in the following manner:

 If you type the URL of a website into your browser, your browser sends the request to the Web server. When
the browser does this it looks on your machine for a cookie file that URL has set. If it finds it, your browser
will send all of the name-value pairs along with the URL. If it does not find a cookie file, it sends no cookie
data.

 The URL’s Web server receives the cookie data and requests for a page. If name-value pairs are received,

the server can use them. If no name-value pairs are received, the server can create a new ID and then sends
name-value pairs to your machine in the header for the Web page it sends. Your machine stores the name
value pairs on your hard disk.

Cookies can be used to determine how many visitors visit your site. It can also determine how many are new
versus repeated visitors. The way it does this is by using a database. The first time a visitor arrives, the site
creates a new ID in the database and sends the ID as a cookie. The next time the same user comes back, the site
can increment a counter associated with that ID in the database and know how many times that visitor returns.
The sites can also store user preferences so that site can look different for each visitor.

Which mechanism to choose?

Session
mechanism

Description

HttpSession There is no limit on the size of the session data kept.
 The performance is good.
 This is the preferred way of maintaining state. If we use the HTTP session with the application server’s

persistence mechanism (server converts the session object into BLOB type and stores it in the
Database) then the performance will be moderate to poor.

Note: When using HttpSession mechanism you need to take care of the following points:

 Remove session explicitly when you no longer require it.
 Set the session timeout value.
 Your application server may serialize session objects after crossing a certain memory limit. This is

expensive and affects performance. So decide carefully what you want to store in a session.
Hidden fields There is no limit on size of the session data.

 May expose sensitive or private information to others (So not good for sensitive information).
 The performance is moderate.

URL rewriting There is a limit on the size of the session data.
 Should not be used for sensitive or private information.
 The performance is moderate.

Cookies There is a limit for cookie size.
 The browser may turn off cookies.
 The performance is moderate.

The benefit of the cookies is that state information can be stored regardless of which server the client talks to
and even if all servers go down. Also, if required, state information can be retained across sessions.

Q 11: Explain the life cycle methods of a servlet? SF
A 11: The Web container is responsible for managing the servlet’s life cycle. The Web container creates an instance of

the servlet and then the container calls the init() method. At the completion of the init() method the servlet is in

Enterprise Java

71

ready state to service requests from clients. The container calls the servlet’s service() method for handling each
request by spawning a new thread for each request from the Web container’s thread pool [It is also possible to
have a single threaded Servlet, refer Q16 in Enterprise section]. Before destroying the instance the container will
call the destroy() method. After destroy() the servlet becomes the potential candidate for garbage collection.

Note on servlet reloading:

Most servers can reload a servlet after its class file has been modified provided the servlets are deployed to
$server_root/servlets directory. This is achieved with the help of a custom class loader. This feature is handy for development
and test phases. This is not recommended for production since it can degrade performance because of timestamp comparison
for each request to determine if a class file has changed. So for production it is recommended to move the servlet to server’s
class path ie $server_root/classes.

When a server dispatches a request to a servlet, the server first checks if the servlet's class file has changed on disk. If it has
changed, the server abandons the class loader used to load the old version and creates a new instance of the custom class
loader to load the new version. Old servlet versions can stay in memory indefinitely (so the effect is the other classes can still
hold references to the old servlet instances, causing odd side effects, but the old versions are not used to handle any more
requests. Servlet reloading is not performed for classes found in the server's classpath because the core, primordial class loader,
loads those classes. These classes are loaded once and retained in memory even when their class files change.

Servlet Life Cycle

init()

service()

destroy()

called once

called once

instantiate
& call init()

ready to serve requests

thread 1 : client request
thread 2 : client request
thread 3 : client request

handle m ultiple
requests and send
response.

Q 12: Explain the directory structure of a WEB application? SF SE
A 12: Refer Q7 in Enterprise section for diagram: J2EE deployment structure and explanation in this section where

MyAppsWeb.war is depicting the Web application directory structure. The directory structure of a Web application
consists of two parts:

 A public resource directory (document root): The document root is where JSP pages, client-side classes

and archives, and static Web resources are stored.

 A private directory called WEB-INF: which contains following files and directories:

 web.xml : Web application deployment descriptor.
 *.tld : Tag library descriptor files.
 classes : A directory that contains server side classes like servlets, utility classes, JavaBeans etc.
 lib : A directory where JAR (archive files of tag libraries, utility libraries used by the server side classes)

files are stored.

Note: JSP resources usually reside directly or under subdirectories of the document root, which are directly
accessible to the user through the URL. If you want to protect your Web resources then hiding the JSP files
behind the WEB-INF directory can protect the JSP files from direct access. Refer Q35 in Enterprise section.

Q 13: What is the difference between doGet () and doPost () or GET and POST? SF SE

Enterprise Java

72

A 13:
GET or doGet() POST or doPost()
The request parameters are transmitted as a query string
appended to the request. Allows browser bookmarks but not
appropriate for transmitting private or sensitive information.
http://MyServer/MyServlet?name=paul
This is a security risk.

The request parameters are passed with the body of the
request.

More secured.

GET was originally intended for static resource retrieval.

POST was intended for input data submits where the results
are expected to change.

GET is not appropriate when large amounts of input data are
being transferred.

Q 14: What are the ServletContext and ServletConfig objects? What are Servlet environment objects? SF
A 14: The Servlet Engine uses both objects.

ServletConfig ServletContext
The ServletConfig parameters are for a particular Servlet.
The parameters are specified in the web.xml (ie
deployment descriptor).

The ServletContext parameters are specified for the entire Web
application. The parameters are specified in the web.xml (ie
deployment descriptor).

Web App1

Servlet Engine

MyServlet1

MyServlet2

config

config

ServletConfig objects init
params set for eachSevlet

ServletContext
init param for
the web app

web.xml (Deployment Descriptor) snippets
<web-app>
 <context-param>
 <param-name>GlobalClassName</param-name>
 <param-value>MyWebAppClass</param-value>
 </context-param>

 <servlet>
 <servlet-name>MyServlet1</servlet-name>
 <servlet-class>com.MyServlet</servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/config/config.xml</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
</web-app>

Servlet Environment Objects

Web App2

............

........

Q 15: What is the difference between HttpServlet and GenericServlet? SF
A 15:

GenericServlet HttpServlet
A GenericServlet has a service() method to
handle requests.

The HttpServlet extends GenericServlet and adds support for HTTP
protocol based methods like doGet(), doPost(), doHead() etc.

Protocol independent. Protocol dependent.

Q 16: How do you make a Servlet thread safe? What do you need to be concerned about with storing data in Servlet

instance fields? CI PI BP
A 16: As shown in the figure Servlet Life Cycle in Q11 in Enterprise section, a typical (or default) Servlet life cycle

creates a single instance of each servlet and creates multiple threads to handle the service() method. The multi-
threading aids efficiency but the servlet code must be coded in a thread safe manner. The shared resources
(e.g. instance variables, utility or helper objects etc) should be appropriately synchronized or should only use
variables in a read-only manner. Having large chunks of code in synchronized blocks in your service methods can
adversely affect performance and makes the code more complex.

Enterprise Java

73

Alternatively it is possible to have a single threaded model of a servlet by implementing the marker or null
interface javax.servlet.SingleThreadedModel. The container will use one of the following approaches to ensure
thread safety:

 Instance pooling where container maintains a pool of servlets.
 Sequential processing where new requests will wait while the current request is being processed.

Best practice: It is best practice to use multi-threading and stay away from the single threaded model of the
servlet unless otherwise there is a compelling reason for it. Shared resources can be synchronized or used in
read-only manner or shared values can be stored in a database table. The single threaded model can adversely
affect performance.

Q 17: What is pre-initialization of a Servlet? LF
A 17: By default the container does not initialize the servlets as soon as it starts up. It initializes a servlet when it

receives a request for the first time for that servlet. This is called lazy loading. The servlet deployment descriptor
(web.xml) defines the <load-on-startup> element, which can be configured to make the servlet container load and
initialize the servlet as soon as it starts up. The process of loading a servlet before any request comes in is called
pre-loading or pre-initializing a servlet. We can also specify the order in which the servlets are initialized.

<load-on-startup>2</load-on-startup>

Q 18: What is a RequestDispatcher? What object do you use to forward a request? LF CO
A 18: A Servlet can obtain its RequestDispatcher object from its ServletContext.

//…inside the doGet() method
ServletContext sc = getServletContext();
RequestDispatcher rd = sc.getRequestDispatcher(url);

// forwards the control to another servlet or JSP to generate response. This method allows one servlet to do preliminary
//processing of a request and another resource to generate the response
rd.forward(request,response);
 or
// includes the content of the resource such as Servlet, JSP, HTML, Images etc into the calling Servlet’s response.
rd.include(request, response);

Q 19: What is the difference between forwarding a request and redirecting a request? LF DC
A 19: Both methods redirect you to a new resource like Servlet, JSP etc. But

redirecting - sendRedirect() forward
Sends a header back to the browser, which contains the name of
the resource to be redirected to. The browser will make a fresh
request from this header information. Need to provide absolute
URL path.

Forward action takes place within the server without
the knowledge of the browser.

Has an overhead of extra remote trip but has the advantage of
being able to refer to any resource on the same or different domain
and also allows book marking of the page.

No extra network trip.

Q 20: What are the considerations for servlet clustering? DC SI
A 20: The clustering promotes high availability and scalability. The considerations for servlet clustering are:

 Objects stored in a session should be serializable to support in-memory replication of sessions. Also
consider the overhead of serializing very large objects. Test the performance to make sure it is acceptable.

 Design for idempotence. Failure of a request or impatient users clicking again can result in duplicate
requests being submitted. So the Servlets should be able to tolerate duplicate requests.

 Avoid using instance and static variables in read and write mode because different instances may exist
on different JVMs. Any state should be held in an external resource such as a database.

 Avoid storing values in a ServletContext. A ServletContext is not serializable and also the different
instances may exist in different JVMs.

 Avoid using java.io.* because the files may not exist on all backend machines. Instead use
getResourceAsStream().

Enterprise Java

74

Q 21: If an object is stored in a session and subsequently you change the state of the object, will this state change

replicated to all the other distributed sessions in the cluster? DC SI
A 21: No. Session replication is the term that is used when your current service state is being replicated across multiple

application instances. Session replication occurs when we replicate the information (ie session attributes) that
are stored in your HttpSession. The container propagates the changes only when you call the setAttribute(……)
method. So mutating the objects in a session and then by-passing the setAttribute(………..) will not replicate the
state change. CO

Example If you have an ArrayList in the session representing shopping cart objects and if you just call
getAttribute() to retrieve the ArrayList and then add or change something without calling the
setAttribute(……………) then the container may not know that you have added or changed something in the
ArrayList. So the session will not be replicated.

Q 22: What is a filter, and how does it work? LF DP
A 22: A filter dynamically intercepts requests and responses to transform or use the information contained in the

requests or responses but typically do not themselves create responses. Filters can also be used to transform the
response from the Servlet or JSP before sending it back to client. Filters improve reusability by placing recurring
tasks in the filter as a reusable unit.

A good way to think of Servlet filters is as a chain of steps that a request and response must go through before
reaching a Servlet, JSP, or static resource such as an HTML page in a Web application.

W e b C o n ta in e r
S e r v le t , J S P , H T M L

F i l te r 2

F i l te r 3

F i l te r 1R
eq

ue
st

R
es

po
ns

e

C l ie n t

F i l t e r

The filters can be used for caching and compressing content, logging and auditing, image conversions (scaling up
or down etc), authenticating incoming requests, XSL transformation of XML content, localization of the request and
the response, site hit count etc. The filters are configured through the web.xml file as follows:

<web-app>
 <filter>
 <filter-name>HitCounterFilter</filter-name>
 <filter-class>myPkg.HitCounterFilter</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>HitCounterFilter</filter-name>
 <url-pattern>/usersection/*</url-pattern>
 </filter-mapping>
 ...
</web-app>

The HitCounterFilter will intercept the requests from the URL pattern /usersection followed by any resource name.

Design Pattern: Servlet filters use the slightly modified version of the chain of responsibility design pattern.
Unlike the classic (only one object in the chain handle the request) chain of responsibility where filters allow
multiple objects (filters) in a chain to handle the request. If you want to modify the request or the response in the
chain you can use the decorator pattern (Refer Q11 in How would you go about… section).

Q 23: Explain declarative security for WEB applications? SE

Enterprise Java

75

A 23: Servlet containers implement declarative security. The administration is done through the deployment descriptor
web.xml file. With declarative security the Servlets and JSP pages will be free from any security aware code.
You can protect your URLs through web.xml as shown below:

web-app>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>PrivateAndSensitive</web-resource-name>
 <url-pattern>/private/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>executive</role-name>
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>

 <!-- form based authorization -->
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/error.jsp</form-error-page>
 </form-login-config>
 </login-config>
</web-app>

The user will be prompted for the configured login.jsp when restricted resources are accessed. The container also
keeps track of which users have been previously authenticated.

Benefits: Very little coding is required and developers can concentrate on the application they are building and
system administrators can administer the security settings without or with minimal developer intervention. Let’s
look at a sample programmatic security in a Web module like a servlet: CO

User user = new User();
Principal principal = request.getUserPrincipal();
if (request.isUserInRole("boss"))
 user.setRole(user.BOSS_ROLE);

Q 24: Explain the Front Controller design pattern or explain J2EE design patterns? DP
A 24: Problem: A J2EE system requires a centralized access point for HTTP request handling to support the integration

of system services like security, data validation etc, content retrieval, view management, and dispatching. When
the user accesses the view directly without going through a centralized mechanism, two problems may occur:

 Each view is required to provide its own system services often resulting in duplicate code.
 View navigation is left to the views. This may result in shared code for view content and view navigation.
 Distributed control is more difficult to maintain, since changes will often need to be made in numerous

places.

Solution: Generally you write specific servlets for specific request handling. These servlets are responsible for
data validation, error handling, invoking business services and finally forwarding the request to a specific JSP view
to display the results to the user.

J 2 E E F ro n t C o n tro lle r p a tte rn

C lie n t F ro n tC o n tro lle r A p p lic a tio n F lo w C o n tro lle r

V ie w

C o m m a n d
(e g : S T R U T S A c tio n)

< < s e rv le t> >
F ro n tC o n tro lle rS e rv le t

< < J S P > >
F ro n tC o n tro lle rJ S P

c lie n t
re q u e s t d e le g a te s

d is p a tc h e s

in v o k e s

Enterprise Java

76

The Front Controller suggests that we only have one Servlet (instead of having specific Servlet for each specific
request) centralising the handling of all the requests and delegating the functions like validation, invoking business
services etc to a command or a helper component. For example Struts framework uses the command design
pattern to delegate the business services to an action class.

Benefits

 Avoid duplicating the control logic like security check, flow control etc.
 Apply the common logic, which is shared by multiple requests in the Front controller.
 Separate the system processing logic from the view processing logic.
 Provides a controlled and centralized access point for your system.

Q 25: Briefly discuss the following patterns Composite view, View helper, Dispatcher view and Service to worker? Or

explain J2EE design patterns? DP
A 25:

 Composite View: Creates an aggregate view from atomic sub-views. The Composite View entirely focuses
on the View. The View is typically a JSP page, which has the HTML, JSP Tags etc. The JSP display pages
mostly have a side bar, header, footer and main content area. These are the sub-views of the view. The sub-
views can be either static or dynamic. The best practice is to have these sub-views as separate JSP pages
and include them in the whole view. This will enable reuse of JSP sub-views and improves maintainability
by having to change them at one place only.

Composite View

BasicView

View CompositeView

1

 View Helper: When processing logic is embedded inside the controller or view it causes code duplication in
all the pages. This causes maintenance problems, as any change to piece of logic has to be done in all the
views. In the view helper pattern the view delegates its processing responsibilities to its helper classes. The
helper classes JavaBeans: used to compute and store the presentation data and Custom Tags: used for
computation of logic and displaying them iteratively complement each other.

Benefits Avoids embedding programming logic in the views and facilitates division of labour between Java
developers and Web page designers.

 Service to Worker and Dispatcher View: These two patterns are a combination of Front Controller and View

Helper patterns with a dispatcher component. One of the responsibilities of a Front Controller is choosing a
view and dispatching the request to an appropriate view. This behaviour can be partitioned into a separate
component known as a dispatcher. But these two patterns differ in the way they suggest different division of
responsibility among the components.

Service to Worker Dispatcher View
Combines the front controller (Refer Q24 in Enterprise
section) and dispatcher, with views and view helpers (refer
Q25 in Enterprise section) to handle client requests and
dynamically prepares the response.

 Controllers delegate the content retrieval to the view

helpers, which populates the intermediate model
content for the view.

 Dispatcher is responsible for the view management

and view navigation.

This pattern is structurally similar to the service to worker
but the emphasis is on a different usage pattern. This
combines the Front controller and the dispatcher with the
view helpers but

 Controller does not delegate content retrieval to

view helpers because this activity is deferred to
view processing.

 Dispatcher is responsible for the view management

and view navigation.

Enterprise Java

77

Promotes more up-front work by the front controller
and dispatcher for the authentication, authorization,
content retrieval, validation, view management and
navigation.

Relatively has a lightweight front controller and
dispatcher with minimum functionality and most of the
work is done by the view.

Q 26: Explain Servlet URL mapping? SF
Q 26:

S erv le t U R L m ap p in g

h ttp ://< h o s tn a m e :p o rt> /< w e b a p p n a m e > /se rv le t /< p a th n a m e > /< re so u rce n a m e >

h ttp ://lo ca lh os t:808 0 /m yA pps /se rv le t /m yP a th /M yS e rv le t

U R L

U R L eg

S E R V E R _ H O M E \W e b A p p s \m yA p p s \W E B -IN F \C la s s e s \m yP a th \M yS e rv le tF ile

S e rv e r R o o t
D o c u m e n t ro o t

W e ca n d e fin e th e se rv le t m a p p in g in th e w e b .x m l d e p lo ym n e t d e scrip to r file a s sh o w n b e lo w :
< w e b -a p p >
 < se rv le t>
 < se rv le t-n a m e > M y S e rv le t< /se rv le t-n a m e >
 < se rv le t-c la ss> m y P a th .M y S e rv le t< /se rv le t-c la ss>
 < /se rv le t>

 < se rv le t-m a p p in g >
 < se rv le t-n a m e > M y S e rv le t< /se rv le t-n a m e >
 < u rl-p a tte rn > m in e /* .d o < /u rl-p a tte rn >
 < /se rv le t-m a p p in g >
< w e b -a p p >

h ttp ://lo ca lh o s t:8 0 8 0 /m yA p p s /m in e /te s t.d oU R L a fte r m ap p in g

N o te : W h ich m e a n s e ve ry re q u e s t w h ich h a s a p a tte rn o f h ttp ://lo c a lh o s t:8 0 8 0 /m y A p p s / m in e /* .d o w ill b e h a n d le d b y
th e m y P a th .M y S e rv le t c la ss . (* d e n o te s w ild ch a ra c te r fo r a n y a lp h a n u m e ric n a m e). A lso p o ss ib le to m a p M yS e rv le t to
th e p a tte rn o f /m in e /* , th e * in d ica te s a n y re so u rce n a m e fo llo w e d b y /m in e .

T h e w e b a p p n a m e is d e fin e d in th e a p p lic a tio n .x m l d e p lo ym e n t d e scrip to r file . T h e < co n te x t-ro o t > d e n o te s th e w e b
a p p n a m e a s sh o w n b e lo w

< a p p lica tio n >

 < m o d u le id = "W e b M o d u le _ 1 ">
 < w e b >
 < w e b -u ri> m yA p p sW e b .w a r< /w e b -u ri>
 < co n te x t-ro o t> m y A p p s < /co n te x t-ro o t>
 < /w e b >
 < /m o d u le >

 < m o d u le id = "E jb M o d u le _ 1 ">
 < e jb > m yE JB .ja r< /e jb >
 < /m o d u le >

< /a p p lica tio n >

H o w d o w e g e t th e w eb ap p n a m e "m yA p p s"

W ith o u t M ap p in g in w eb .xm l

W ith M ap p in g in w eb .xm l d ep lo ym en t d e scrip to r file

Enterprise - JSP

Q 27: What is a JSP? What is it used for? What do you understand by the term JSP translation phase or compilation

phase? SF
A 27: JSP (Java ServerPages) is an extension of the Java Servlet technology. JSP is commonly used as the

presentation layer for combining HTML and Java code. While Java Servlet technology is capable of generating
HTML with out.println(“<html>….. </html>”) statements, where out is a PrintWriter. This process of embedding
HTML code with escape characters is cumbersome and hard to maintain. The JSP technology solves this by
providing a level of abstraction so that the developer can use custom tags and action elements, which can speed
up Web development and are easier to maintain.

Enterprise Java

78

As shown in the figure the JSPs have a translation or a compilation process where the JSP engine translates
and compiles a JSP file into a JSP Servlet. The translated and compiled JSP Servlet moves to the execution
phase (run time) where they can handle requests and send response.

Unless explicitly compiled ahead of time, JSP files are compiled the first time they are accessed. On large
production sites, or in situations involving complicated JSP files, compilation may cause unacceptable delays to
users first accessing the JSP page. The JSPs can be compiled ahead of time (ie precompiled) using application
server tools/settings or by writing your own script.

A p p lic a tio n S e rv e r

C
LIEN

T (B
row

ser)

W
eb Server

W e b C o n ta in e r

s ta tic d o c s
 (H T M L ,C S S e tc)

Servlet Engine

JSP Engine

S e rv le ts

J S P S e rv le ts

J S P s

H T T P
re q u e s t

H T T P
re s p o n s e

J S P m o v in g p a rts

Q 28: Explain the life cycle methods of a JSP? SF
A 28:

 Pre-translated: Before the JSP file has been translated and compiled into the Servlet.
 Translated: The JSP file has been translated and compiled as a Servlet.
 Initialized: Prior to handling the requests in the service method the container calls the jspInit() to initialize the

Servlet. Called only once per Servlet instance.
 Servicing: Services the client requests. Container calls this method for each request.
 Out of service: The Servlet instance is out of service. The container calls the jspDestroy() method.

Q 29: What are the main elements of JSP? What are scriplets? What are expressions? SF
A 29: There are two types of data in a JSP page.

 Static part (ie HTML, CSS etc), which gets copied directly to the response by the JSP Engine.
 Dynamic part, which contains anything that can be translated and compiled by the JSP Engine.

There are three types of dynamic elements. (TIP: remember SAD as an abbreviation for Scripting, Action and
Directive elements).

Scripting Elements: A JSP element that provides embedded Java statements. There are three types of scripting
elements.

 Declaration Element: is the embedded Java declaration statement, which gets inserted at the Servlet class

level.

<%! Calendar c = Calendar.getInstance(); %>

Important: declaring variables via this element is not thread-safe, because this variable ends up in the generated Servlet
as an instance variable, not within the body of the _jspservice() method. Ensure their access is either read-only or
synchronized.

 Expression Element: is the embedded Java expression, which gets evaluated by the service method.

<%= new Date()>

Enterprise Java

79

 Scriptlet Elements: are the embedded Java statements, which get executed as part of the service method.

(Note: Not recommended to use Scriptlet elements because they don’t provide reusability and maintainability.
Use custom tags (like JSTL, JSF tags, etc) or beans instead).

<%
//Java codes
String userName=null;
userName=request.getParameter("userName");
%>

Action Elements: A JSP element that provides information for execution phase.

<jsp:useBean id="object_name" class="class_name"/>
<jsp:include page="scripts/login.jsp" />

Directive Elements: A JSP element that provides global information for the translation phase.

<%@ page import=”java.util.Date” %>
<%@ include file=”myJSP” %>
<%@ taglib uri=”tagliburi” prefix=”myTag”%>

Q 30: What are the different scope values or what are the different scope values for <jsp:usebean> ? SF
A 30:

Scope Object Comment
Page PageContext Available to the handling JSP page only.
Request Request Available to the handling JSP page or Servlet and forwarded JSP page or Servlet.
Session Session Available to any JSP Page or Servlet within the same session.
Application Application Available to all the JSP pages and Servlets within the same Web Application.

Q 31: What are the differences between static and a dynamic include? SF DC
A 31:

Static include <%@ include %> Dynamic include <jsp:include …..>
During the translation or compilation phase all the
included JSP pages are compiled into a single Servlet.

The dynamically included JSP is compiled into a separate Servlet.
It is a separate resource, which gets to process the request, and
the content generated by this resource is included in the JSP
response.

No run time performance overhead. Has run time performance overhead.

Which one to use: Use “static includes” when a JSP page does not change very often. For the pages, which change frequently,
use dynamic includes. JVM has a 64kb limit on the size of the method and the entire JSP page is rendered as a single method. If
a JSP page is greater than 64kb, this probably indicates poor implementation. When this method reaches its limit of 64kb it
throws an error. This error can be overcome by splitting the JSP files and including them dynamically (i.e. using
<jsp:include…….>) because the dynamic includes generate separate JSP Servlet for each included file.

Note: The “dynamic include” (jsp:include) has a flush attribute. This attribute indicates whether the buffer should be flushed
before including the new content. In JSP 1.1 you will get an error if you omit this attribute. In JSP 1.2 you can omit this attribute
because the flush attribute defaults to false.

Q 32: What are implicit objects and list them? SF
A 32: Implicit objects are the objects that are available for the use in JSP documents without being declared first. These

objects are parsed by the JSP engine and inserted into the generated Servlet. The implicit objects are:

Implicit object Scope comment
request Request request
response Page response
pageContext Page page environment
session Session session
application Application same as ServletContext
out Page writing to the outputstream
config Page same as ServletConfig
page Page this page’s Servlet
exception Page exception created on this page.

Enterprise Java

80

Note: Care should be taken not to name your objects the same name as the implicit objects. If you have your own object with the
same name, then the implicit objects take precedence over your own object.

Q 33: Explain hidden and output comments? SF
A 33: An output comment is a comment that is sent to the client where it is viewable in the browser’s source. CO

<!--This is a comment which is sent to the client-->

A hidden comment documents a JSP page but does not get sent to the client. The JSP engine ignores a hidden
comment, and does not process any code within hidden comment tags.

<%-- This comment will not be visible to the client --%>

Q 34: Is JSP variable declaration thread safe? CI
A 34: No. The declaration of variables in JSP is not thread-safe, because the declared variables end up in the generated

Servlet as an instance variable, not within the body of the _jspservice() method.

The following declaration is not thread safe: because these are declarations, and will only be evaluated once
when the page is loaded

<%! int a = 5 %>

The following declaration is thread safe: because the variables declared inside the scriplets have the local
scope and not shared.

<% int a = 5 %>

Q 35: Explain JSP URL mapping? What is URL hiding or protecting the JSP page? SF SE
A 35: As shown in the figure, the JSP resources usually reside directly or under subdirectories (e.g. myPath) of the

document root, which are directly accessible to the user through the URL. If you want to protect your Web
resources then hiding the JSP files behind the WEB-INF directory can protect the JSP files, css (cascading style
sheets) files, Java Script files, pdf files, image files, html files etc from direct access. The request should be made
to a servlet who is responsible for authenticating and authorising the user before returning the protected JSP page
or its resources.

http://<hostname:port>/<webapp name><pathname>/<resourcename>

http://localhost:8080/myApps/myPath/myPage.jsp

URL

URL eg

SERVER_HOME\W ebApps\myApps\myPath\myPage.jspFile

Server Root

Document root

JSP URL Mapping

myPage.jsp is hidden or protected. cannot be
directly accessed through URL

Hidden URL

MyApps

myPage.jsp

W EB-INF

lib

classes

myPath

myPage.jsp is dircetly accessible through URL
MyApps

myPath myPage.jsp

W EB-INF
lib

classes

Unhidden URL

Enterprise Java

81

Q 36: What are custom tags? Explain how to build custom tags? SF
A 36: Custom JSP tag is a tag you define. You define how a tag, its attributes and its body are interpreted, and then

group your tags into collections called tag libraries that can be used in any number of JSP files. So basically it is a
reusable and extensible JSP only solution. The pre-built tags also can speed up Web development. CO

STEP: 1
Construct the Tag handler class that defines the behaviour.

C all se tX X X () m eth o ds on the Tag

d oS tartTag ()

eva lua te body o f the T ag

doA fterB ody()

doE ndT ag()

s tart

re lease()

loop

T ag E va lu atio n P ro cess

S am p le co d e u s in g o n ly d o S atartT ag ()

pack age m yT agP k g;

pub lic c lass M yT ag ex tends T agS upport
{
 in t a ttr = nu ll;
 pub lic in t se tA ttr(in t a ttr){th is .a ttr = a ttr}
 pub lic in t ge tA ttr(){re tu rn a ttr;}

 pub lic in t doS tartT ag() th row s JspE xcep tion {

 re tu rn S K IP _B O D Y;
 }

 pub lic vo id re lease(){.....}
}

STEP: 2
The Tag library descriptor file (*.tld) maps the XML element names to the tag implementations. The code sample
MyTagDesc.tld is shown below:

<taglib>
 <tag>
 <name>tag1</name>
 <tagclass>myTagPkg.MyTag</tagclass>
 <bodycontent>empty</bodycontent>
 <attribute>
 <name>attr</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 </tag>
</taglib>

STEP: 3
The web.xml deployment descriptor maps the URI to the location of the *.tld (Tag Library Descriptor) file. The code
sample web.xml file is shown below:

<web-app>
 <taglib>
 <taglib-uri>/WEB-INF/MyTagURI</taglib-uri>
 <taglib-location>/WEB-INF/tags/MyTagDesc.tld</taglib-location>
 </taglib>
</web-app>

STEP: 4
The JSP file declares and then uses the tag library as shown below:

<%@ taglib uri="/WEB-INF/ MyTagURI" prefix="myTag" %>

< myTag:tag1 attr=”abc”></ myTag:tag1> or < myTag:tag1 attr=”abc” />

Enterprise Java

82

Q 37: What is a TagExtraInfo class? SF
A 37: A TagExtraInfo class provides extra information about tag attributes to the JSP container at translation time.

 Returns information about the scripting variables that the tag makes available to the rest of the JSP page
to use. The method used is:

VariableInfo[] getVariableInfo(TagData td)

Example

<html>
 <myTag:addObjectsToArray name=”myArray” />
 <myTag:displayArray name=”myArray” />
</html>

Without the use of TagExtraInfo, if you want to manipulate the attribute myArray in the above code in a
scriptlet it will not be possible. This is because it does not place the myArray object on the page. You can still
use pageContext.getAttribute() but that may not be a cleaner approach because it relies on the page
designer to correctly cast to object type. The TagExtraInfo can be used to make items stored in the
pageContext via setAttribute() method available to the scriptlet as shown below.

<html>
 <myTag:addObjectsToArray name=”myArray” />
 <%-- scriplet code %>
 <% for(int i=0; i<myArray.length;i++){
 html += + myArray[i] + ;

%>
</html>

 Validates the attributes passed to the Tag at translation time.

Example It can validate the myArray array list to have not more than 100 objects. The method used is:

boolean isValid(TagData data)

Q 38: What is the difference between custom JSP tags and JavaBeans? SF
A 38: In the context of a JSP page, both accomplish similar goals but the differences are:

Custom Tags JavaBeans
Can manipulate JSP content. Can’t manipulate JSP content.
Custom tags can simplify the complex operations much
better than the bean can. But require a bit more work to
set up.

Easier to set up.

Used only in JSPs in a relatively self-contained manner. Can be used in both Servlets and JSPs. You can define a bean in
one Servlet and use them in another Servlet or a JSP page.

JavaBeans declaration and usage example: CO

<jsp:useBean id="identifier" class="packageName.className"/>
<jsp:setProperty name="identifier" property="classField" value="someValue" />
<jsp:getProperty name="identifier" property="classField" /> <%=identifier.getclassField() %>

Q 39: Tell me about JSP best practices? BP
A 39:

 Separate HTML code from the Java code: Combining HTML and Java code in the same source code can
make the code less readable. Mixing HTML and scriplet will make the code extremely difficult to read and
maintain. The display or behaviour logic can be implemented as a custom tags by the Java developers and
Web designers can use these Tags as the ordinary XHTML tags.

 Place data access logic in JavaBeans: The code within the JavaBean is readily accessible to other JSPs
and Servlets.

Enterprise Java

83

 Factor shared behaviour out of Custom Tags into common JavaBeans classes: The custom tags are not
used outside JSPs. To avoid duplication of behaviour or business logic, move the logic into JavaBeans and
get the custom tags to utilize the beans.

 Choose the right “include” mechanism: What are the differences between static and a dynamic include?
Using includes will improve code reuse and maintenance through modular design. Which one to use? Refer
Q31 in Enterprise section.

 Use style sheets (e.g. css), template mechanism (e.g. struts tiles etc) and appropriate comments (both
hidden and output comments).

Q 40: How will you avoid scriptlet code in JSP? BP
A 40: Use JavaBeans or Custom Tags instead.

Enterprise - JDBC

Q 41: What is JDBC? How do you connect to a database? SF
A 41: JDBC stands for Java Database Connectivity. It is an API which provides easy connection to a wide range of

databases. To connect to a database we need to load the appropriate driver and then request for a connection
object. The Class.forName(….) will load the driver and register it with the DriverManager (Refer Q4 in Java section
for dynamic class loading).

Class.forName(“oracle.jdbc.driver.OracleDriver”);
String url = jdbc:oracle:thin:@hostname:1526:myDB;
Connection myConnection = DriverManager.getConnection(url, “username”, “password”);

The DataSource interface provides an alternative to the DriverManager for making a connection. DataSource
makes the code more portable than DriverManager because it work with JNDI and it is created, deployed and
managed separately from the application that uses it. If the DataSource location changes, then there is no need to
change the code but change the configuration properties in the server. This makes your application code easier to
maintain. DataSource allows the use of connection pooling and support for distributed transactions. A DataSource
is not only a database but also can be a file or a spreadsheet. A DataSource object can be bound to JNDI and an
application can retrieve and use it to make a connection to the database. J2EE application servers provide tools to
define your DataSource with a JNDI name. When the server starts it loads all the DataSources into the Application
Server’s JNDI service.

DataSource configuration properties are shown below:
 JNDI Name jdbc/myDataSource
 URL jdbc:oracle:thin:@hostname:1526:myDB
 UserName, Password
 Implementation classname oracle.jdbc.pool.OracleConnectionPoolDataSource
 Classpath ora_jdbc.jar
 Connection pooling settings like minimum pool size, maximum pool size, connection timeout, statement cache size etc.

Once the DataSource has been set up, then you can get the connection object as follows:

Context ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup("jdbc/myDataSource");
Connection myConnection = ds.getConnection(“username”,”password”);

In a basic implementation a Connection obtained from a DataSource and a DriverManager are identical. But,
DataSource is recommended because of its better portability.

Design Pattern: JDBC architecture decouples an abstraction from its implementation so that the implementation
can vary independent of the abstraction. This is an example of the bridge design pattern. The JDBC API
provides the abstraction and the JDBC drivers provide the implementation. New drivers can be plugged-in to the
JDBC API without changing the client code.

Q 42: What are JDBC Statements? What are different types of statements? How can you create them? SF

Enterprise Java

84

A 42: A statement object is responsible for sending the SQL statements to the Database. Statement objects are created
from the connection object and then executed. CO

Statement stmt = myConnection.createStatement();
ResultSet rs = stmt.executeQuery(“SELECT id, name FROM myTable where id =1245”);// to read

Or
stmt.executeUpdate(“INSERT INTO (field1,field2) values (1,3)”);// to insert/update/delete/create table

The types of statements are:

 Statement (regular statement as shown above)
 PreparedStatement (more efficient than statement due to pre-compilation of SQL)
 CallableStatement (to call stored procedures on the database)

To use prepared statement:

PreparedStatement prepStmt =
 myConnection.prepareStatement("SELECT id, name FROM myTable where id = ? ");
prepStmt.setInt(1, 1245);

Callable statements are used for calling stored procedures.

CallableStatement calStmt = myConnection.prepareCall("{call PROC_SHOWMYBOOKS}");
ResultSet rs = cs.executeQuery();

Q 43: What is a Transaction? What does setAutoCommit do? TI PI
A 43: A transaction is a set of operations that should be completed as a unit. If one operation fails then all the other

operations fail as well. For example if you transfer funds between two accounts there will be two operations in the
set

1. Withdraw money from one account.
2. Deposit money into other account.

These two operations should be completed as a single unit. Otherwise your money will get lost if the withdrawal is
successful and the deposit fails. There are four characteristics (ACID properties) for a Transaction.

Atomicity Consistency Isolation Durability
All the individual
operations should
either complete or fail.

The design of the
transaction should
update the database
correctly.

Prevents data being corrupted by concurrent
access by two different sources. It keeps
transactions isolated or separated from each
other until they are finished.

Ensures that the database
is definitely updated once
the Transaction is
completed.

Transactions maintain data integrity. A transaction has a beginning and an end like everything else in life. The
setAutocommit(….), commit() and rollback() are used for marking the transactions (known as transaction
demarcation). When a connection is created, it is in auto-commit mode. This means that each individual SQL
statement is treated as a transaction and will be automatically committed immediately after it is executed. The way
to allow two or more statements to be grouped into a transaction is to disable auto-commit mode: CO

try{
 Connection myConnection = dataSource.getConnection();

 // set autoCommit to false
 myConnection .setAutoCommit(false);

 withdrawMoneyFromFirstAccount(.............); //operation 1
 depositMoneyIntoSecondAccount(.............); //operation 2

 myConnection .commit();
}
catch(Exception sqle){
 try{
 myConnection .rollback();
 }catch(Exception e){}
}
finally{
 try{if(conn != null) {conn.close();}} catch(Exception e) {}
}

Enterprise Java

85

The above code ensures that both operation 1 and operation 2 succeed or fail as an atomic unit and consequently
leaves the database in a consistent state. Also turning auto-commit off will provide better performance.

Q 44: What is the difference between JDBC-1.0 and JDBC-2.0? What are Scrollable ResultSets, Updateable ResultSets,

RowSets, and Batch updates? SF
A 44: JDBC2.0 has the following additional features or functionality:

JDBC 1.0 JDBC 2.0
With JDBC-1.0 the
ResultSet functionality
was limited. There was no
support for updates of any
kind and scrolling through
the ResultSets was
forward only (no going
back)

With JDBC 2.0 ResultSets are updateable and also you can move forward and backward.

Example This example creates an updateable and scroll-sensitive ResultSet

Statement stmt = myConnection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATEABLE)

With JDBC-1.0 the
statement objects submits
updates to the database
individually within same or
separate transactions.
This is very inefficient
large amounts of data
need to be updated.

With JDBC-2.0 statement objects can be grouped into a batch and executed at once. We call
addBatch() multiple times to create our batch and then we call executeBatch() to send the SQL
statements off to database to be executed as a batch (this minimises the network overhead).

Example

Statement stmt = myConnection.createStatement();
stmt.addBatch(“INSERT INTO myTable1 VALUES (1,”ABC”)”);
stmt.addBatch(“INSERT INTO myTable1 VALUES (2,”DEF”)”);
stmt.addBatch(“INSERT INTO myTable1 VALUES (3,”XYZ”)”);
…
int[] countInserts = stmt.executeBatch();

- The JDBC-2.0 optional package provides a RowSet interface, which extends the ResultSet. One
of the implementations of the RowSet is the CachedRowSet, which can be considered as a
disconnected ResultSet.

Q 45: How to avoid the “running out of cursors” problem? DC PI MI
A 45: A database can run out of cursors if the connection is not closed properly or the DBA has not allocated enough

cursors. In a Java code it is essential that we close all the valuable resources in a try{} and finally{} block. The
finally{} block is always executed even if there is an exception thrown from the catch {} block. So the resources like
connections and statements should be closed in a finally {} block. CO

Wrong Approach -

Connections and statements will not be closed if there
is an exception:

 public void executeSQL() throws SQLException{

 Connection con = DriverManager.getConnection(........);

 Statement stmt = con.createStatement();

 //line 20 where exception is thrown
 ResultSet rs = stmt.executeQuery("SELECT * from myTable");

 rs.close();
 stmt.close();
 con.close();
 }

Note: if an exception is thrown at line 20 then the
close() statements are never reached.

Right Approach -

 public void executeSQL() throws SQLException{
 try{
 Connection con = DriverManager.getConnection(........);

 Statement stmt = con.createStatement();

 //line 20 where exception is thrown
 ResultSet rs = stmt.executeQuery("SELECT * from myTable");

 }
 finally{
 try {
 if(rs != null) rs.close();
 if(stmt != null) stmt.close();
 if(con != null) con.close();
 }
 catch(Exception e){}
 }
 }

Note: if an exception is thrown at line 20 then the
finally clause is called before the exception is thrown to
the method.

Try{} Finally {} blocks to close Exceptions

Enterprise Java

86

Q 46: What is the difference between statements and prepared statements? SF PI SE BP
A 46:

 Prepared statements offer better performance, as they are pre-compiled. Prepared statements reuse the
same execution plan for different arguments rather than creating a new execution plan every time. Prepared
statements use bind arguments, which are sent to the database engine. This allows mapping different
requests with same prepared statement but different arguments to execute the same execution plan.

 Prepared statements are more secure because they use bind variables, which can prevent SQL injection

attack.

The most common type of SQL injection attack is SQL manipulation. The attacker attempts to modify the
SQL statement by adding elements to the WHERE clause or extending the SQL with the set operators like
UNION, INTERSECT etc.

Example Let us look at the following SQL:

SELECT * FROM users where username=’bob’ AND password=’xyfdsw’ ;

The attacker can manipulate the SQL as follows

SELECT * FROM users where username=’bob’ AND password=’xyfdsw’ OR ‘a’ = ‘a’ ;

The above “WHERE” clause is always true because of the operator precedence. The PreparedStatement
can prevent this by using bind variables:

String strSQL = SELECT * FROM users where username=? AND password=?);
PreparedStatement pstmt = myConnection.prepareStatement(strSQL);
pstmt.setString(1,”bob”);
pstmt.setString(2, “xyfdsw”);
pstmt.execute();

Q 47: Explain differences among java.util.Date, java.sql.Date, java.sql.Time, and java.sql.Timestamp? SF
A 47: As shown below all the sql Date classes extend the util Date class.

java.util.Date

java.sql.Date java.sql.Time java.sql.TimeStamp

Java Date classes

java.util.Date - class supports both the Date (ie year/month/date etc) and the Time (hour, minute, second, and
millisecond) components.

java.sql.Date - class supports only the Date (ie year/month/date etc) component. The hours, minutes, seconds
and milliseconds of the Time component will be set to zero in the particular time zone with which the instance is
associated.

java.sql.Time - class supports only Time (ie hour, minute, second, and millisecond) component. The date
components should be set to the "zero epoch" value of January 1, 1970 and should not be accessed.

java.sql.TimeStamp – class supports both Date (ie year/month/date etc) and the Time (hour, minute, second,
millisecond and nanosecond) components.

Note: the subtle difference between java.util.Date and java.sql.Date.

Enterprise Java

87

To keep track of time Java counts the number of milliseconds from January 1, 1970 and stores it as a long value in
java.util.Date class. The GregorianCalendar class provides us a way to represent an arbitrary date. The
GregorianCalendar class also provides methods for manipulating dates.

Enterprise – JNDI & LDAP

Q 48: What is JNDI? And what are the typical uses within a J2EE application? SF
A 48: JNDI stands for Java Naming and Directory Interface. It provides a generic interface to LDAP (Lightweight

Directory Access Protocol) and other directory services like NDS, DNS (Domain Name System) etc. It provides a
means for an application to locate components that exist in a name space according to certain attributes. A J2EE
application component uses JNDI interfaces to look up and reference system-provided and user-defined objects in
a component environment. JNDI is not specific to a particular naming or directory service. It can be used to access
many different kinds of systems including file systems.

The JNDI API enables applications to look up objects such as DataSources, EJBs, MailSessions and JMS by
name. The Objects can be loaded into the JNDI tree using a J2EE application server’s administration console. To
load an object in a JNDI tree, choose a name under which you want the object to appear in a JNDI tree. J2EE
deployment descriptors indicate the placement of J2EE components in a JNDI tree.

 O b je c ts a n d /o r S e rv ic e

In it ia lC o n te x t

s u b -c o n te x t

n a m e d o b je c t /s e rv ic e
re fe re n c e

n a m e d o b je c t /s e rv ic e
re fe re n c e

J N D I T re e

N o te : J N D I tre e liv e s in th e s e rv e r a s a c o lle c tio n o f n a m e d o b je c t o r s e rv ic e re fe re n c e s .

The parameters you have to define for JNDI service are as follows:

 The name service provider class name (WsnInitialContext for Websphere).

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.ibm.websphere.naming.WsnInitialContextFactory");

 The provider URL :

 The name service hostname.
 The name service port number.

env.put(Context. PROVIDER_URL, " iiop://localhost:1050");
Context ctx = new InitialContext(env);

JNDI is like a file system or a Database.

File System JNDI Database
File system starts with a mounted
drive like c:\

JNDI starts with an InitialContext. i.e. new
InitialContext().

Database instance

Enterprise Java

88

Uses a subdirectory. C:\subdir1 Navigate to a sub-context. e.g. Subcontext1 Tablespace
Access a subdirectory
c:\subdir1\subdir2

Drill down through other sub-contexts. e.g.
subcontext1/subcontext2

Table

Access a file.
C:\subdir1\subdir2\myFile

Access an object or a service.
New InitialContext().lookup(“objectName”);

Data

Example:

c:\subdir1\subdir2\myFile

Example:

iiop://myserver:2578/subcontext1.subcontext2.o
bjectName

Example:

Select * from demo.myTable

Q 49: Explain the difference between the look up of “java:comp/env/ejb/MyBean” and “ejb/MyBean”? SF
A 49:

java:comp/env/ejb/MyBean ejb/MyBean
This is a logical reference, which will be used in your code.

This is a physical reference where an object will be mapped to in
a JNDI tree.

The logical reference (or alias) java:comp/env/ejb/MyBean is the recommended approach because you cannot
guarantee that the physical JNDI location (ejb/MyBean) you specify in your code will be available. Your code will
break if the physical location is changed. The deployer will not be able to modify your code. Logical references
solve this problem by binding the logical name to the physical name in the application server. The logical names
will be declared in the deployment descriptors (web.xml and/or ejb-jar.xml) as follows and these will be mapped to
physical JNDI locations in the application server specific deployment descriptors.

To look up a JDBC resource from either WEB (web.xml) or EJB (ejb-jar.xml) tier, the deployment descriptor should
have the following entry:

 <resource-ref>
 <description>The DataSource</description>
 <res-ref-name>jdbc/MyDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

To use it:

Context ctx = new InitialContext();
Object ref = ctx.lookup(java:comp/env/jdbc/MyDataSource);

To look up EJBs from another EJB or a WEB module, the deployment descriptor should have the following entry:

<ejb-ref>
 <description>myBean</description>
 <ejb-ref-name>ejb/MyBean</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <ejb-link>Region</ejb-link>
 <home>com.MyBeanHome</home>
 <remote>com.MyBean</remote>
</ejb-ref>

To use it:

Context ctx = new InitialContext();
Object ref = ctx.lookup(java:comp/env/ejb/MyBean);

Q 50: What is a JNDI InitialContext? SF
A 50: All naming operations are relative to a context. The InitalContext implements the Context interface and provides

an entry point for the resolution of names.

Q 51: What is an LDAP server? And what is it used for in an enterprise environment? SF SE
A 51: LDAP stands for Lightweight Directory Access Protocol. This is an extensible open network protocol standard that

provides access to distributed directory services. LDAP is an Internet standard for directory services that run on
TCP/IP. Under OpenLDAP and related servers, there are two servers – slapd, the LDAP daemon where the
queries are sent to and slurpd, the replication daemon where data from one server is pushed to one or more

This will make full logical path to the bean
as:
java:comp/env/jdbc/MyDataSource

This will make full logical path to the bean
as:
java:comp/env/ejb/MyBean

Enterprise Java

89

slave servers. By having multiple servers hosting the same data, you can increase reliability, scalability, and
availability.

 It defines the operations one may perform like search, add, delete, modify, change name
 It defines how operations and data are conveyed.

LDAP has the potential to consolidate all the existing application specific information like user, company phone
and e-mail lists. This means that the change made on an LDAP server will take effect on every directory service
based application that uses this piece of user information. The variety of information about a new user can be
added through a single interface which will be made available to Unix account, NT account, e-mail server, Web
Server, Job specific news groups etc. When the user leaves his account can be disabled to all the services in a
single operation.

So LDAP is most useful to provide “white pages” (e.g. names, phone numbers, roles etc) and “yellow pages” (e.g.
location of printers, application servers etc) like services. Typically in a J2EE application environment it will be
used to authenticate and authorise users.

Why use LDAP when you can do the same with relational database (RDBMS)?

In general LDAP servers and RDBMS are designed to provide different types of services. LDAP is an open
standard access mechanism, so an RDBMS can talk LDAP. However the servers, which are built on LDAP, are
optimized for read access so likely to be much faster than RDBMS in providing read access. So in a nutshell,
LDAP is more useful when the information is often searched but rarely modified. (Another difference is that
RDBMS systems store information in rows of tables whereas LDAP uses object oriented hierarchies of entries.) .

Key LDAP Terms:

DIT: Directory Information Tree. Hierarchical structure of entries, those make up a directory.

DN: Distinguished Name. This uniquely identifies an entry in the directory. A DN is made up of relative DNs of
the entry and each of entry’s parent entries up to the root of the tree. DN is read from right to left and commas
separate these names. For example ‘cn=Peter Smith, o=ACME, c=AUS’.

objectClass: An objectClass is a formal definition of a specific kind of objects that can be stored in the directory.
An ObjectClass is a distinct, named set of attributes that represent something concrete such as a user, a
computer, or an application.

LDAP URL: This is a string that specifies the location of an LDAP resource. An LDAP URL consists of a server
host and a port, search scope, baseDN, filter, attributes and extensions. Refer to diagram below:

objectC lassFactory=country

objectC lassFactory=organ ization

ob jectC lassFactory=user

LD A P D irectory structure

root

c=A U S c=U K

o=A C M E o=XYZR etail o=Q uickC orp

cn=Peter Sm ith

m ail=PSm ith@ N A B .com
phone=88888888

Enterprise Java

90

So the complete distinguished name for bottom left entry (ie Peter Smith) is cn=Peter Smith, o=ACME, c=AUS.
Each entry must have at least one attribute that is used to name the entry. To manage the part of the LDAP
directory we should specify the highest level parent distinguished names in the server configuration. These
distinguished names are called suffixes. The server can access all the objects that are below the specified suffix
in the hierarchy. For example in the above diagram to answer queries about ‘Peter Smith’ the server should have
the suffix of ‘o=ACME, c=AUS’. So we can look for “Peter Smith” by using the following distinguished name:

cn=Peter Smith, o=ACME, c=AUS //where o=ACME, c=AUS is the suffix

LDAP schema: defines rules that specify the types of objects that a directory may contain and the required
optional attributes that entries of different types should have.

Filters: In LDAP the basic way to retrieve data is done with filters. There is a wide variety of operators that can be
used as follows: & (and), | (or), ! (not), ~= (approx equal), >= (greater than or equal), <= (less than or equal), *
(any) etc.

(& (uid=a*) (uid=*l))

So where does JNDI fit into this LDAP? JNDI provides a standard API for interacting with naming and directory
services using a service provider interface (SPI), which is analogous to JDBC driver. To connect to an LDAP
server, you must obtain a reference to an object that implements the DirContext. In most applications, this is done
by using an IntialDirContext object that takes a Hashtable as an argument:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, “com.sun.jndi.ldap.LdapCtxFactory”);
env.put(Context.PROVIDER_URL, “ldap://localhost:387”);
env.put(Context.SECURITY_AUTHENTICATION, “simple”);
env.put(Context.SECURITY_PRINCIPAL, “cn=Directory Manager”);
env.put(Context.SECURITY_CREDENTIALS, “myPassword”);
DirContext ctx = new InitialDirContext(env);

Enterprise - RMI

Q 52: Explain the RMI architecture? SF
A 52: Java Remote Method Invocation (RMI) provides a way for a Java program on one machine to communicate with

objects residing in different JVMs (or processes or address spaces). The important parts of the RMI architecture
are the stub class, object serialization and the skeleton class. RMI uses a layered architecture where each of the
layers can be enhanced without affecting the other layers. The layers can be summarised as follows:

 Application Layer: The client and server program

 Stub & Skeleton Layer: Intercepts method calls made by the client. Redirects these calls to a remote RMI

service.

 Remote Reference Layer: Sets up connections to remote address spaces, manages connections, and

understands how to interpret and manage references made from clients to the remote service objects.

 Transport layer: Based on TCP/IP connections between machines in a network. It provides basic connectivity,

as well as some firewall penetration strategies.

Design pattern: RMI stub classes provide a reference to a skeleton object located in a different address space on
the same or different machine. This is a typical example of a proxy design pattern (i.e. remote proxy), which
makes an object executing in another JVM appear like a local object. In JDK 5.0 and later, the RMI facility uses
dynamic proxies instead of generated stubs, which makes RMI easier to use. Refer Q11 in “How would you
about…” section for a more detailed discussion on proxy design pattern and dynamic proxies.

Enterprise Java

91

ServerC lient

RMI Transport Layer

C lient Process Server P rocess

RMI Transport Layer

C lient
O bjects

R em ote R eference
M anager

Stub

R em ote
O bjects

Skeleton

R em ote R eference
M anager

R M I R egistry
(or JNDI Server)

2 . look up S tub

4. M ethod call on rem ote server O bjects5. Send results or Exception

3. R eturn S tub Stub 1. Load Stubs

N ote: Steps 4 & 5 are logica l exp lanation on ly. N either the S tubs nor Skeletons
use sockets d irectly . The actua l ca lls are m ade through the R em ote R eference
M anager. The R em ote R eference M anager handles the actua l deta ils o f
com m unicating w ith the rem ote process. This extra layer m anages netw ork
com m unication and conserves scarce resources like sockets.

R M I A rchitecture

Program 1 stub

skeleton

Program 2stub

skeleton

E xam ple

RMI runtime steps (as shown in the diagram above) involved are:

Step 1: Start RMI registry and then the RMI server. Bind the remote objects to the RMI registry.
Step 2: The client process will look up the remote object from the RMI registry.
Step 3: The lookup will return the stub to the client process from the server process.
Step 4: The client process will invoke method calls on the stub. The stub calls the skeleton on the server process
through the RMI reference manager.
Step 5: The skeleton will execute the actual method call on the remote object and return the result or an exception
to the client process via the RMI reference manager and the stub.

Q 53: What is a remote object? Why should we extend UnicastRemoteObject? SF
A 53: A remote object is one whose methods can be invoked from another JVM (or process). A remote object class must

implement the Remote interface. A RMI Server is an application that creates a number of remote objects.

An RMI Server is responsible for

 Creating an instance of the remote object (e.g. CarImpl instance = new CarImpl()).
 Exporting the remote object.
 Binding the instance of the remote object to the RMI registry.

By exporting a remote object you make it available to accept incoming calls from the client. You can export the
remote object by either extending the java.rmi.server.UnicastRemoteObject or if your class is already extending
another class then you can use the static method

Enterprise Java

92

UnicastRemoteObject.exportObject (this);

If the UnicastRemoteObject is not extended (ie if you use UnicastRemoteObject.exportObject(…) then the
implementation class is responsible for the correct implementations of the hashCode(), equals() and toString()
methods. A remote object is registered in the RMI registry using:

Naming.rebind(String serviceName, Remote remoteObj);

Remote interface
eg: public interface Car extends Remote{}

Implementation of Remote interface
eg: public class CarImpl extends UnicastRemoteObject implements Car{}

Compile Car &
CarImpl

use rmic to generate stubs & skeletons
rmic -d /classes CarImpl

stub class skeleton class

Client Object
instances

stub Object
instances

skeleton Object
instances

remote Object
instances

generated generated
instantiated

instantiated
instantiated

Remote Objects

java.rmi.server.RemoteServer

java.rmi.server.UnicastRemoteObject

java.rmi.Remote

Q 54: What is the difference between RMI and CORBA? SF
A 54:

RMI CORBA
Java only solution. The interfaces,
implementations and the clients are all written
in Java.

CORBA was made specifically for interoperability among various
languages. For example the server could be written in C++ and the
business logic can be in Java and the client can be written in COBOL.

RMI allows dynamic loading of classes at
runtime.

In a CORBA environment with multi-language support it is not possible to
have dynamic loading.

Q 55: What are the services provided by the RMI Object? SF
A 55: In addition to its remote object architecture RMI provides some basic object services, which can be used in a

distributed application. These services are

 Object naming/registry service: RMI servers can provide services to clients by registering one or more
remote objects with its local RMI registry.

 Object activation service: It provides a way for server (or remote) objects to be started on an as-needed

basis. Without the remote activation service, a server object has to be registered with the RMI registry service.

 Distributed garbage collection: It is an automatic process where an object, which has no further remote
references, becomes a candidate for garbage collection.

Q 56: What are the differences between RMI and a socket? SF
A 56:

Enterprise Java

93

Socket RMI
A socket is a transport mechanism. Sockets are like
applying procedural networking to object oriented
environment.

RMI uses sockets. RMI is object oriented. Methods can be
invoked on the remote objects running on a separate JVM.

Sockets-based network programming can be laborious. RMI provides a convenient abstraction over raw sockets. Can
send and receive any valid Java object utilizing underlying
object serialization without having to worry about using data
streams.

Q 57: How will you pass parameters in RMI? SF
A 57:

 Primitive types are passed by value (e.g. int, char, boolean etc).

 References to remote objects (i.e. objects which implements the Remote interface) are passed as remote
references that allows the client process to invoke methods on the remote objects.

 Non-remote objects are passed by value using object serialization. These objects should allow them to be

serialized by implementing the java.io.Serializable interface.

Note: The client process initiates the invocation of the remote method by calling the method on the stub. The stub
(client side proxy of the remote object) has a reference to the remote object and forwards the call to the skeleton
(server side proxy of the remote object) through the reference manager by marshalling the method arguments.
During marshalling each object is checked to determine whether it implements java.rmi.Remote interface. If it does
then the remote reference is used as the marshalled data otherwise the object is serialized into byte streams and
sent to the remote process where it is deserialized into a copy of the local object. The skeleton converts this
request from the stub into the appropriate method call on the actual remote object by unmarshalling the method
arguments into local stubs on the server (if they are remote reference) or into local copy (if they are sent as
serialized objects).

Q 58: What is HTTP tunnelling or how do you make RMI calls across firewalls? SF SE
A 58: RMI transport layer generally opens direct sockets to the server. Many Intranets have firewalls that do not allow

this. To get through the firewall an RMI call can be embedded within the firewall-trusted HTTP protocol. To get
across firewalls, RMI makes use of HTTP tunnelling by encapsulating RMI calls within an HTTP POST request.

Proxy Server

RMI Client

Web Server
on port 80

RMI Server

H
TT

P
en

ca
ps

ul
at

ed
R

M
I c

al
l

ca
ll

fo
rw

ar
de

d
by

C
G

I s
cr

ip
t

Firewall Firewall

HTTP tunnelling

When a firewall proxy server can forward HTTP requests only to a well-known HTTP port: The firewall proxy
server will forward the request to a HTTP server listening on port 80, and a CGI script will be executed to forward
the call to the target RMI server port on the same machine.

When a firewall proxy server can forward HTTP requests to any arbitrary port: The firewall proxy will forward
to any arbitrary port on the host machine and then it is forwarded directly to the port on which RMI Server is
listening.

The disadvantages of HTTP tunnelling are performance degradation, prevents RMI applications from using call-
backs, CGI script will redirect any incoming request to any port, which is a security loophole, RMI calls cannot be
multiplexed through a single connection since HTTP tunnelling follows a request/response protocol etc.

Enterprise Java

94

Q 59: Why use RMI when we can achieve the same benefits from EJB? SF
A 59: EJBs are distributed components, which use the RMI framework for object distribution. An EJB application server

provides more services like transactions, object pooling, database connection-pooling etc, which RMI does not
provide. These extra services that are provided by the EJB server simplify the programming effort at the cost of
performance overhead compared to plain RMI. So if performance is important then pure RMI may be a better
solution (or under extreme situations Sockets can offer better performance than RMI).

Note: The decision to go for RMI or EJB or Sockets should be based on requirements such as maintainability, ease of coding,
extensibility, performance, scalability, availability of application servers, business requirements etc.

Enterprise – EJB 2.x

There are various persistence mechanisms available like EJB 2.x, Object-to-Relational (O/R) mapping tools like Hibernate, JDBC and
EJB 3.0 (new kid on the block) etc. You will have to evaluate the products based on the application you are building because each
product has its strengths and weaknesses. You will find yourself trading ease of use for scalability, standards with support for special
features like stored procedures, etc. Some factors will be more important to you than for others. There is no one size fits all solution.
Let’s compare some of the persistence products:

EJB 2.x EJB 3.0 Hibernate JDBC
PROS:
 Security is provided for free
for accessing the EJB.

 Provides declarative
transactions.

 EJBs are pooled and
cached. EJB life cycles are
managed by the container.

 Has remote access
capabilities and can be
clustered for scalability.

PROS:
 A lot less artefacts than EJB
2.x. Make use of annotations
or attributes based
programming.

 Narrows the gap between EJB
2.x and O/R mapping.

 Do support OO concepts like
inheritance.

PROS:
 Simple to write CRUD
(create, retrieve, update,
delete) operations.

 No container or application
server is required and can be
plugged into an existing
container.

 Tools are available to simplify
mapping relational data to
objects and quick to develop.

PROS:
 You have complete control
over the persistence
because this is the building
blocks of nearly all other
persistence technologies in
Java.

 Can call Stored Procedures.

 Can manipulate relatively
large data sets.

Cons:
 Need to understand the

intricacies like rolling back
a transaction, granularity
etc, infrastructures like
session facades, business
delegates, value objects etc
and strategies like lazy
loading, dirty marker etc.

 EJBs use lots of resources

and have lots of artifacts.

 Does not support OO

concepts like inheritance.

Cons:
 Since it is new, might be too
early to use in commercial
projects.

 It is still evolving.

Cons:
 Little or no capabilities for
remote access and
distributability.

 Mapping schemas can be
tedious and O/R mapping
has its tricks like using lazy
initialization, eager loading
etc. What works for one may
not work for another.

 Limited clustering
capabilities.

 Large data sets can still
cause memory issues.

 Support for security at a
database level only and no
support for role based
security without any add on
APIs like Aspect Oriented
Programming etc.

Cons:
 You will have to write a lot
of code to perform a little.
Easy to make mistakes in
properly managing
connections and can cause
out of cursors issues.

 Harder to maintain because
changes in schemas can
cause lot of changes to your
code.

 Records need to be locked
manually (e.g. select for
update).

As a rule of thumb, suitable
for distributed and clustered
applications, which is heavily
transaction based. Records
in use say between 1 and 50.

As a rule of thumb, suitable for
distributed and clustered
applications, which is heavily
transaction based. Records in
use say between 1 and 100.

Suitable for records in use
between 100 and 5000. Watch
out for memory issues, when
using large data sets.

Where possible stay away
from using JDBC unless you
have compelling reason to
use it for batch jobs where
large amount of data need to
be transferred, records in use
greater than 5000, required
to use Stored Procedures
etc.

Enterprise Java

95

The stateless session beans and message driven beans have wider acceptance in EJB 2.x compared to stateful session
beans and entity beans. Refer Emerging Technologies/Frameworks section for Hibernate and EJB 3.0.

Q 60: What is the role of EJB 2.x in J2EE? SF
A 60: EJB 2.x (Enterprise JavaBeans) is a widely adopted server side component architecture for J2EE.

 EJB is a remote, distributed multi-tier system and supports protocols like JRMP, IIOP, and HTTP etc.
 It enables rapid development of reusable, versatile, portable business components across middleware,

transactional and scalable applications.
 EJB is a specification for J2EE servers. EJB components contain only business logic and system level

programming and services like transactions, security, instance pooling, threading, persistence etc are
managed by the EJB Container and hence simplify the programming effort.

 Message driven EJBs have support for asynchronous communication.

Note: Having said that EJB 2.x is a widely adopted server side component, EJB 3.0 is taking ease of
development very seriously and has adjusted its model to offer the POJO (Plain Old Java Object) persistence and
the new O/R mapping model based on Hibernate. In EJB 3.0, all kinds of enterprise beans are just POJOs.
EJB 3.0 extensively uses Java annotations, which replaces excessive XML, based configuration files and
eliminates the need for the rigid component model used in EJB 1.x, 2.x. Annotations can be used to define the
bean’s business interface, O/R mapping information, resource references etc. Refer Q18 in Emerging
Technologies/Frameworks section. So, for future developments look out for EJB 3.0 and/or Hibernate framework.
Refer Q14 – Q16 in Emerging Technologies/Frameworks section for discussion on Hibernate framework.

J2EE Server

C++ application

Firewall

HTTP Client
(eg: Browser, Wireless etc)

Java Applet,
Java stand-alone application

Other J2EE
Systems

Servlets
(use JavaBeans)

JSP
(use JavaBeans)

 EJB Container (Enterprise Java Beans are deployed)

Connectors (JCA)

Database

Legacy System,
ERP System etc

Servlets
(use JavaBeans)

Web Services
(SOAP, UDDI, WSDL, ebXML)

IIOP RMI/IIOP

HTTP

proprietary protocol

SQL

Messaging
Client

messaging

EJB Session Bean EJB Message Driven Bean EJB Session Bean

EJB Session BeanEJB Entity Bean EJB Session Bean

Message Oriented
Middleware Topic

SQL (fast Lane Reader)

EJB - Big Picture

Bu
sin

es
s L

og
ic

pr
ov

ide
d

by
th

e
de

ve
lop

er
 th

ro
ug

h
EJ

B

Sy
ste

m
 L

ev
el

Se
rv

ice
s l

ike
tra

ns
ac

tio
n,

 S
ec

ur
ity

 e
tc

ar
e

pr
ov

ide
d

by
 th

e
co

nt
ain

er

Business Delegate
(use JavaBeans)

Other J2EE
Systems

Web Services
(SOAP, UDDI, WSDL, ebXML)

Q 61: What is the difference between EJB and JavaBeans? SF
A 61: Both EJB and JavaBeans have very similar names but this is where the similarities end.

JavaBeans Enterprise JavaBeans (EJB)
The components built based on JavaBeans live in a single
local JVM (or address space) and can be either visual (e.g.
GUI components like Button, List etc) or non-visual at
runtime.

The Enterprise JavaBeans are non-visual distributable
components, which can live across multiple JVMs (or address
spaces).

Enterprise Java

96

No explicit support exists for services like transactions etc. EJBs can be transactional and the EJB servers provide
transactional support.

JavaBeans are fine-grained components, which can be
used to assemble coarse-grained components or an
application.

EJBs are coarse-grained components that can be deployed as
is or assembled with other components into larger
applications. EJBs must be deployed in a container that
provides services like instance pooling, multi-threading,
security, life-cycle management, transactions etc

Must conform to JavaBeans specification. Must conform to EJB specification.

Q 62: Explain EJB architecture? SF
A 62:

EJ
B

 C
lie

nt
(e

g
Se

rv
le

t,
JS

P
, S

ta
nd

 a
lo

ne

ap
pl

ic
at

io
n,

 A
pp

le
t e

tc
)

E J B S e r v e r

E J B C o n ta in e r
E n te rp r is e J a v a B e a n s

S e s s io n B e a n s
s ta te fu l / s ta te le s s

E n t i ty B e a n s
C M P / B M P

H o m e /L o c a lH o m e
In te r fa c e

R e m o te /L o c a l
In te r fa c e

H o m e O b je c t /
L o c a l H o m e O b je c t

E J B O b je c t /
E J B L o c a lO b je c t

s y n c h ro n o u s

s y n c h ro n o u s

E n te r p r is e S e r v ic e s a n d A P I

J N D I J M S T ra n s a c t io n s S e c u r i ty

D a ta b a s e S e r v e r

J M S
M e s s a g e
P r o d u c e r

(e g p u b l is h /
s u b s c r ib e

T o p ic)

J M S M e s s a g e
L is te n e r In te r fa c eA s y n c h ro n o u s

E n te rp r is e J a v a B e a n s

E IS S y s te mM e s s a g e -D r iv e n
B e a n s

E J B C o n ta in e r

C l ie n t

J N D I

H o m e O b je c t

E J B O B je c t

D e p lo y m e n t d e s c r ip to r
 - B e a n d e f in i t io n
 - T ra n s a c t io n
 - S e c u r ity e tc

E J B C o n te x t

b e a n in s ta n c e

1 . L
ookup

2. g
e t S

TUB

H o m e In te r fa c e

R e m o te In te r fa c e

3 . In
v o k e

c re a te ()

f in d ()

re m o ve ()

o n th e s tu b

4. in
te rcept &

 apply

5.
 n

ew

in
st

an
ce

7 . R e fe r

6.
 in

te
rc

ep
t &

 a
pp

ly
 s

er
vi

ce
s

8 . b e a n l i fe -c y c le m e th o d se jb C re a te ()o re jb F in d ()

9 . in v o k eb e a n m e th o d s
1 0 . b e a n b u s in e s s m e th o d s

g e tH o rs e P o w e r () e tc

S a m p le C o d e :
 C o n te x t in it ia lC tx = n e w In it ia lC o n te x t () ; / / In it ia l iz e th e J N D I c o n te x t . ie e n t r y p o in t .
 C a rH o m e h o m e O b je c t = (C a r H o m e) in it ia lC tx . lo o k u p (e jb /M y E jb) ; / / S te p s 1 & 2 in th e a b o v e d ia g ra m
 C a r c a rO b je c t = h o m e O b je c t .c r e a te () ; / / S te p s 3 - 8
 c a rO b je c t .g e tH o rs e P o w e r () ; / / S te p s 9 - 1 0

N o te : A n E J B c l ie n t s h o u ld n e v e r a c c e s s a n E n te rp r is e J a v a B e a n d ire c t ly . A n y a c c e s s is d o n e th ro u g h th e
c o n ta in e r g e n e ra te d c la s s e s w h ic h in tu rn in v o k e b e a n m e th o d s . T h e c o n ta in e r g e n e ra te d c la s s e s in te rc e p t th e
re q u e s t a n d a p p ly s e rv ic e s l ik e t r a n s a c t io n , s e c u r i ty e tc p r io r to in v o k in g th e a c tu a l m e th o d o n th e E n e te rp r is e J a v a
B e a n s .

E J B A r c h ite c tu r e

P e rs is te n c e

EJB Container: EJBs are software components, which run in an environment called an EJB container. An EJB
cannot function outside an EJB Container. The EJB container hosts and manages an Enterprise JavaBean in a
similar manner that a Web container hosts a servlet or a Web browser hosts a Java Applet. The EJB container
manages the following services so that the developer can concentrate on writing the business logic:

 Transactions (refer Q71 – Q75 in Enterprise section)
 Persistence
 EJB instance pooling
 Security (refer Q81 in Enterprise section)
 Concurrent access (or multi-threading)
 Remote access

Design pattern: EJBs use the proxy design pattern to make remote invocation (i.e. remote proxy) and to add
container managed services like security and transaction demarcation. Refer Q11 in “How would you about…”
section for a more detailed discussion on proxy design pattern and dynamic proxies.

Enterprise Java

97

EJBContext: Every bean obtains an EJBContext object, which is a reference directly to the container. The EJB
can request information about its environment like the status of a transaction, a remote reference to itself (an EJB
cannot use ‘this’ to reference itself) etc.

Deployment Descriptor: The container handles all the above mentioned services declaratively for an EJB based
on the XML deployment descriptor (ejb-jar.xml). When an EJB is deployed into a container the deployment
descriptor is read to find out how these services are handled. Refer to the J2EE deployment structure diagram in
Q6 in Enterprise section.

EJB: The EJB architecture defines 3 distinct types of Enterprise JavaBeans.

 Session beans.
 Entity beans.
 Message-driven beans.

The session and entity beans are invoked synchronously by the client and message driven beans are invoked
asynchronously by a message container such as a publish/subscribe topic. Let’s look at some of the EJB
container services in a bit more detail:

Instance pooling

EJB instance pooling

EJB Se rve r

Note :
1 The c lient looks up the s tub f rom the jndi and invokes the create() method on the EJBHome object.
 CarHome hom e Obje ct = (CarHome) initialCtx .lookup(ejb/MyEjb);
 Car carObjec t = homeObject.create()
2-3 The EJbHome creates an EJBObject by invoking new Instance() and ass igns a bean ins tance f rom the pool to the
 EJBObject. Now the ass igned bean ins tance becomes in ready s tate f rom the pooled s tate.
4 Now the EJBObject can serv ice c lient requests and reference is returned to the c lient.
 carObject .getHorsePow er();
Finally once the c lient is f inshed w ith EJBObjec t reference the bean ins tance is returned back to the pool to serve other c lients

Clie nt Application

EJB
Home

EJB
Objec t

be an ins tance pool

home
stub 1 . c reate() 2. newInstance()

3. ass ign an ins tance
 to EJB Objec t

4 . return EJB Objec t reference
to c lient

The above diagram shows how the EJB instances are pooled and assigned to EJB Object and then returned to
the pool. Let’s look at in detail for different types of EJBs.

E JB S erv er

s ta te le ss s es s io n & e n tity b ea n p o o lin g

N o te s :
T h e d ia g ra m o n th e le ft sh o w s th a t s in ce th e
s ta te le s s s e s s io n b e a n s a n d e n tity b e a n s
d o n o t m a in ta in a n y c lie n t s ta te th e b e a n
in s ta n ce A w a s firs tly a llo ca te d to c lie n t s tu b
1 a n d la te r o n a llo ca te d to c lie n t s tu b 2 . S o if
th e re a re 1 0 0 0 co n cu rre n t c lie n ts th e n 3 0
in s ta n ce s o f b e a n ca n se rve th e m b y ta k in g
tu rn s .

T h is b e h a v io u r is n o t p o ss ib le w ith re g a rd s to
s ta te fu l s e s s io n b e a n s w h ich m a in ta in th e
c lie n t s ta te . S o th e re w ill b e a d e d ica te d
in s ta n ce o f th e b e a n fo r e a ch c lie n t s tu b . S o
if th e re a re 1 0 0 0 c lie n ts th e n th e re w ill b e
1 0 0 0 in s ta n ce s o f b e a n s . S o h o w d o w e
co n se rve m e m o ry . T h is is d o n e b y a c tiva tio n
a n d p a ss iva tio n . P a s s iva tio n is th e p ro ce ss
w h e re th e b e a n in s ta n ce is se ria lize d in to a
p e rs is te n t s to re w h e n n o t u se d to co n se rve
m e m o ry a n d A c tiva tio n is p ro ce ss w h e re th e
se rilize d b e a n in s ta n ce is d e -se ria lize d b a ck
in to m e m o ry to se rve c lie n t re q u e s t. T h is
p ro ce ss a ffe c ts p e rfo rm a n ce .

E JB S e rv er

B

A

b ean in s tan ce p o o l

C D

E J B
O b jec t

E J B
O b jec t

C lie n t s tub 1

C lien t s tub 2

C lie n t s tub 1
A

B

b ean in s tan ce p o o l

C D

E JB
O b je c t

E JB
O b je c tC lie n t s tub 2

Enterprise Java

98

From the diagrams it is clear that bean instances can be reused for all the bean types except for the stateful
session bean where the client state is maintained. So we need a dedicated stateful session bean for each client.

E J B S e rv e r

M D B -2 b e a n in s ta n c e p o o l
fo r Q 2

C

E J B
O b je c t

E J B
O b je c t

J M S C lie n t 1

J M S C lie n t 2

M D B -1 b e a n in s ta n c e p o o l
fo r Q 1

B CA

AJ M S C lie n t 3

m s g X fo r Q 1

m s g y fo r Q 2

m s g Z fo r Q 2 E J B
O b je c t B

N o te : M D B a re l ik e s ta te le s s s e s s io n b e a n s ,
T h e in s ta n c e p o o ls a re c re a te d fo r e a c h M D B a n d w ith in e a c h p o o l m u lt ip le in s ta n c e s a re c re a te d . In te rm s o f
n u m b e r o f in s ta n c e s c re a te d in e a c h p o o l a re v e ry s im ila r to s ta te le s s s e s s io n b e a n s o r e n t ity b e a n s (ie 3 in s ta n c e s
o f M D B -1 fo r Q 1 in s ta n c e p o o l c a n s e rv e 1 0 J M S c lie n ts fo r Q 1).

M e s s a g e D r iv e n B e a n (M D B) p o o lin g

Concurrent access

The session beans do not support concurrent access. The stateful session beans are exclusively for a client so
there is no concurrent access. The stateless session beans do not maintain any state. It does not make any sense
to have concurrent access. The Entity beans represent data that is in the database table, which is shared between
the clients. So to make concurrent access possible the EJB container need to protect the data while allowing many
clients simultaneous access. When you try to share distributed objects you may have the following problem:

If 2 clients are using the same EJBObject, how do you keep one client from writing over the changes of the other?
Say for example

Client-1 reads a value x= 5
Client-2 modifies the value to x=7
Now the client-1’s value is invalid.

The entity bean addresses this by prohibiting concurrent access to bean instances. Which means several clients
can be connected to one EJBObject but only one client can access the EJB instance at a time.

Persistence

Entity beans basically represent the data in a relational database. An Entity Bean is responsible for keeping its
state in sync with the database.

E n tity b ean s rep resen tin g d ata in th e d atab ase

AccountB ean
id = 1001 (p rim ary-key)
bsb = 1234
accoun t_num ber = 98765432

ins tance fo r id = 1001

AccountB ean
id = 1002 (p rim ary-key)
bsb = 1234
accoun t_num ber = 12345678

ins tance fo r id = 1002

d atab ase

id b sb acco u n t_n u m

1001 1234 98765432

1002 1234 12345678

Acco u n t T ab le

 Container-managed persistence (CMP) - The container is responsible for saving the bean’s state with the help

of object-relational mapping tools.
 Bean-managed persistence (BMP) – The Entity Bean is responsible for saving its own state.

Enterprise Java

99

If entity beans performance is of concern then there are other persistence technologies and frameworks like
JDBC, JDO, Hibernate, OJB and Oracle TopLink (commercial product).

Q 63: What are the different kinds of enterprise beans? SF
A 63:

Session Bean: is a non-persistent object that implements some business logic running on the server. Session
beans do not survive system shut down. There are two types of session beans

 Stateless session beans (each session bean can be reused by multiple EJB clients)
 Stateful session beans (each session bean is associated with one EJB client)

Entity Bean: is a persistent object that represents object views of the data, usually a row in a database. They
have the primary key as a unique identifier. Multiple EJB clients can share each entity bean. Entity beans can
survive system shut shutdowns. Entity beans can have two types of persistence

 Container-managed persistence (CMP) - The container is responsible for saving the bean’s state.
 Bean-managed persistence (BMP) – The Entity Bean is responsible for saving its own state.

Message-driven Bean: is integrated with the Java Message Service (JMS) to provide the ability to act as a
message consumer and perform asynchronous processing between the server and the message producer.

Q 64: What is the difference between session and entity beans? SF
A 64:

Session Beans Entity Beans
Use session beans for application logic. Use entity beans to develop persistent object model.
Expect little reuse of session beans. Insist on reuse of entity beans.
Session beans control the workflow and transactions of a
group of entity beans.

Domain objects with a unique identity (ie-primary key) shared
by multiple clients.

Life is limited to the life of a particular client. Handle
database access for a particular client.

Persist across multiple invocations. Handles database access
for multiple clients.

Do not survive system shut downs or server crashes.

Do survive system shut downs or server crashes.

Q 65: What is the difference between stateful and stateless session beans? SF
A 65:

Stateless Session Beans Stateful Session Bean
Do not have an internal state. Can be reused by different
clients.

Do have an internal state. Reused by the same client.

Need not be activated or passivated since the beans are
pooled and reused.

Need to handle activation and passivation to conserve system
memory since one session bean object per client.

Q 66: What is the difference between Container Managed Persistence (CMP) and Bean Managed Persistence (BMP)?

SF
A 66:

Container Managed Persistence (CMP) Bean Managed Persistence (BMP)
The container is responsible for persisting state of the bean. The bean is itself responsible for persisting its own state.
Container needs to generate database (SQL) calls. The bean needs to code its own database (SQL) calls.
The bean persistence is independent of its database (e.g.
DB2, Oracle, Sybase etc). So it is portable from one data
source to another.

The bean persistence is hard coded and hence may not be
portable between different databases (e.g. DB2, Oracle etc).

Q 67: Can an EJB client invoke a method on a bean directly? SF
A 67: An EJB client should never access an EJB directly. Any access is done through the container. The container will

intercept the client call and apply services like transaction, security etc prior to invoking the actual EJB. This
relationship between the EJB and the container is like “don’t call us, we will call you”.

Q 68: How does an EJB interact with its container and what are the call-back methods in entity beans? SF
A 68: EJB interacts with its container through the following mechanisms

Enterprise Java

100

 Call-back Methods: Every EJB implements an interface (extends EnterpriseBean) which defines several

methods which alert the bean to various events in its lifecycle. A container is responsible for invoking these
methods. These methods notify the bean when it is about to be activated, to be persisted to the database, to
end a transaction, to remove the bean from the memory, etc. For example the entity bean has the following
call-back methods:

public interface javax.ejb.EntityBean {

 public void setEntityContext(javax.ejb.EntityContext c);
 public void unsetEntityContext();
 public void ejbLoad();
 public void ejbStore();
 public void ejbActivate();
 public void ejbPassivate();
 public void ejbRemove();
}

 EJBContext: provides methods for interacting with the container so that the bean can request information

about its environment like the identity of the caller, security, status of a transaction, obtains remote reference
to itself etc. e.g. isUserInRole(), getUserPrincipal(), isRollbackOnly(), etc

 JNDI (Java Naming and Directory Interface): allows EJB to access resources like JDBC connections, JMS

topics and queues, other EJBs etc.

Q 69: What is the difference between EJB 1.1 and EJB 2.0? What is the difference between EJB 2.x and EJB 3.0? SF
A 69: EJB 2.0 has the following additional advantages over the EJB 1.1

 Local interfaces: These are beans that can be used locally, that means by the same Java Virtual Machines,
so they do not required to be wrapped like remote beans, and arguments between those interfaces are
passed directly by reference instead of by value. This improves performance.

 ejbHome methods: Entity beans can declare ejbHome methods that perform operations related to the EJB

component but that are not specific to a bean instance.

 Message Driven Beans (MDB): is a completely new enterprise bean type, which is designed specifically to

handle incoming JMS messages.

 New CMP Model. It is based on a new contract called the abstract persistence schema, which will allow to

the container to handle the persistence automatically at runtime.

 EJB Query Language: It is a sql-based language that will allow the new persistence schema to implement

and execute finder methods.

Let’s look at some of the new features on EJB 2.1

 Container-managed timer service: The timer service provides coarse-grained, transactional, time-based

event notifications to enable enterprise beans to model and manage higher-level business processes.

 Web service support: EJB 2.1 adds the ability of stateless session beans to implement a Web service
endpoint via a Web service endpoint interface.

 EJB-QL: Enhanced EJB-QL includes support for aggregate functions and ordering of results.

Current EJB 2.x model is complex for a variety of reasons:

 You need to create several component interfaces and implement several unnecessary call-back methods.

 EJB deployment descriptors are complex and error prone.

 EJB components are not truly object oriented, as they have restrictions for using inheritance and

polymorphism.

 EJB modules cannot be tested outside an EJB container and debugging an EJB inside a container is very
difficult.

Enterprise Java

101

Note: EJB 3.0 is taking ease of development very seriously and has adjusted its model to offer the POJO (Plain Old Java
Object) persistence and the new O/R mapping model based on Hibernate. In EJB 3.0, all kinds of enterprise beans are just
POJOs. EJB 3.0 extensively uses Java annotations, which replaces excessive XML based configuration files and eliminate
the need for rigid component model used in EJB 1.x, 2.x. Annotations can be used to define the bean’s business interface, O/R
mapping information, resource references etc. Refer Q18 in Emerging Technologies/Frameworks section.

Q 70: What are the implicit services provide by an EJB container? SF
A 70:

 Lifecycle Management: Individual enterprise beans do not need to explicitly manage process allocation,
thread management, object activation, or object destruction. The EJB container automatically manages the
object lifecycle on behalf of the enterprise bean.

 State Management: Individual enterprise beans do not need to explicitly save or restore conversational

object state between method calls. The EJB container automatically manages object state on behalf of the
enterprise bean.

 Security: Individual enterprise beans do not need to explicitly authenticate users or check authorisation

levels. The EJB container automatically performs all security checking on behalf of the enterprise bean.

 Transactions: Individual enterprise beans do not need to explicitly specify transaction demarcation code to
participate in distributed transactions. The EJB container can automatically manage the start, enrolment,
commitment, and rollback of transactions on behalf of the enterprise bean.

 Persistence: Individual enterprise beans do not need to explicitly retrieve or store persistent object data from

a database. The EJB container can automatically manage persistent data on behalf of the enterprise bean.

Q 71: What are transactional attributes? SF TI
A 71: EJB transactions are a set of mechanisms and concepts, which insures the integrity and consistency of the

database when multiple clients try to read/update the database simultaneously.

Transaction attributes are defined at different levels like EJB (or class), a method within a class or segment of a
code within a method. The attributes specified for a particular method take precedence over the attributes
specified for a particular EJB (or class). Transaction attributes are specified declaratively through EJB deployment
descriptors. Unless there is any compelling reason, the declarative approach is recommended over programmatic
approach where all the transactions are handled programmatically. With the declarative approach, the EJB
container will handle the transactions.

Transaction
Attributes

Description

Required Methods executed within a transaction. If client provides a transaction, it is used. If not, a new transaction is
generated. Commit at end of method that started the transaction. Which means a method that has Required
attribute set, but was called when the transaction has already started will not commit at the method
completion. Well suited for EJB session beans.

Mandatory Client of this EJB must create a transaction in which this method operates, otherwise an error will be
reported. Well-suited for entity beans.

RequiresNew Methods executed within a transaction. If client provides a transaction, it is suspended. If not a new
transaction is generated, regardless. Commit at end of method.

Supports Transactions are optional.
NotSupported Transactions are not supported. If provided, ignored.
Never Code in the EJB responsible for explicit transaction control.

Q 72: What are isolation levels? SF TI PI
A 72: Isolation levels provide a degree of control of the effects one transaction can have on another concurrent

transaction. Since concurrent effects are determined by the precise ways in which, a particular relational database
handles locks and its drivers may handle these locks differently. The semantics of isolation mechanisms based on
these are not well defined. Nevertheless, certain defined or approximate properties can be specified as follows:

Isolation level Description
TRANSACTION_SERIALIZABLE Strongest level of isolation. Places a range lock on the data set, preventing other

users from updating or inserting rows into the data set until the transaction is
complete. Can produce deadlocks.

Enterprise Java

102

TRANSACTION_REPEATABLE_READ Locks are placed on all data that is used in a query, preventing other users from
updating the data, but new phantom records can be inserted into the data set
by another user and are included in later reads in the current transaction.

TRANSACTION_READ_COMMITTED Can't read uncommitted data by another transaction. Shared locks are held while
the data is being read to avoid dirty reads, but the data can be changed before
the end of the transaction resulting in non-repeatable reads and phantom
records.

TRANSACTION_READ_UNCOMMITTED Can read uncommitted data (dirty read) by another transaction, and non-
repeatable reads and phantom records are possible. Least restrictive of all
isolation levels. No shared locks are issued and no exclusive locks are
honoured.

Isolation levels are not part of the EJB specification. They can only be set on the resource manager either
explicitly on the Connection (for bean managed persistence) or via the application server specific configuration.
The EJB specification indicates that isolation level is part of the Resource Manager.

As the transaction isolation level increases, likely performance degradation follows, as additional locks are
required to protect data integrity. If the underlying data does not require such a high degree of integrity, the
isolation level can be lowered to improve performance.

Q 73: What is a distributed transaction? What is a 2-phase commit? SF TI
A 73: A Transaction (Refer Q43 in Enterprise section) is a series of actions performed as a single unit of work in which

either all of the actions performed as a logical unit of work in which, either all of the actions are performed or none
of the actions. A transaction is often described by ACID properties (Atomic, Consistent, Isolated and Durable). A
distributed transaction is an ACID transaction between two or more independent transactional resources like
two separate databases. For the transaction to commit successfully, all of the individual resources must commit
successfully. If any of them are unsuccessful, the transaction must rollback in all of the resources. A 2-phase
commit is an approach for committing a distributed transaction in 2 phases.

Phase 1 is prepare: Each of the resources votes on whether it’s ready to commit – usually by going ahead and
persisting the new data but not yet deleting the old data.

Phase 2 is committing: If all the resources are ready, they all commit – after which old data is deleted and
transaction can no longer roll back. 2-phase commit ensures that a distributed transaction can always be
committed or always rolled back if one of the databases crashes. The XA specification defines how an application
program uses a transaction manager to coordinate distributed transactions across multiple resource managers.
Any resource manager that adheres to XA specification can participate in a transaction coordinated by an XA-
compliant transaction manager.

Q 74: What is dooming a transaction? TI
A 74: A transaction can be doomed by the following method call CO

EJBContext.setRollbackOnly();

The above call will force transaction to rollback. The doomed transactions decrease scalability and if a transaction
is doomed why perform compute intensive operations? So we can detect a doomed transaction as shown below:
CO

public void doComputeIntensiveOperation() throws Exception {

 If (ejbContext.getRollbackOnly()) {
 return; //transaction is doomed so return (why unnecessarily perform compute intensive operation)
 }
 else {
 performComplexOperation();
 }
}

Q 75: How to design transactional conversations with session beans? SF TI
A 75: A stateful session bean is a resource which has an in memory state which can be rolled back in case of any

failure. It can participate in transactions by implementing SessionSynchronization. CO

Enterprise Java

103

The uses of SessionSynchronization are:

 Enables the bean to act as a transactional resource and undo state changes on failure.
 Enables you to cache database data to improve performance.

Q 76: Explain exception handling in EJB? SF EH CO
A 76: Java has two types of exceptions:

 Checked exception: derived from java.lang.Exception but not java.lang.RuntimeException.
 Unchecked exception: derived from java.lang.RuntimeException thrown by JVM.

public void depositAmount() throws InsufficientFundException {
 if(this.amount <= 0) {

 throw new InsufficientFundException ("Balance is <= 0");
}
try {
 depositAmount();
} catch (SQLException e) {
 throw new EJBException(e);
} catch (Exception e) {
 throw new EJBException(e);
}

}

Application Exception

System Exception

System vs Application Exception

EJB has two types of exceptions:

 System Exception: is an unchecked exception derived from java.lang.RuntimeException.
 Application Exception: is specific to an application and thrown because of violation of business rules.

A System Exception is thrown by the system and is not recoverable. For example EJB container losing
connection to the database server, failed remote method objects call etc. Because the System Exceptions are
unpredictable, the EJB container is the only one responsible for trapping the System Exceptions. The container
automatically wraps any RuntimeException in RemoteException, which subsequently gets thrown to the caller (or
client). In addition to intercepting System Exception the container may log the errors.

An Application Exception is specific to an application and is thrown because of violation of business rules. The
client should be able to determine how to handle an Application Exception. If the account balance is zero then an
Application Exception like InsufficientFundException can be thrown. If an Application Exception should be
treated as a System Exception (e.g. SQLException) it needs to be wrapped in an EJBException so that it can be
managed properly and propagated to the client.

Q 77: How do you rollback a container managed transaction in EJB? SF TI EH

SessionSynchronization

public class MyBean implements SessionBean, SessionSynchronization{
public int oldVal ; public int val ;

public void ejbCreate(int val) throws CreateException {
this.val=val;
this.oldVal=val;

}

public void afterBegin() { this.oldVal = this.val ;}
public void beforeCompletion(){};
public void afterCompletion(boolean b) { if (b == false) this.val = this.oldVal ; }

}

public interface javax.ejb.SessionSynchronization {
 public void afterBegin();
 public void beforeCompletion();
 public void afterCompletion(boolean b);
}

Enterprise Java

104

A 77: The way the exceptions are handled affects the way the transactions are managed. CO

When the container manages the transaction, it is automatically rolled back when a System Exception occurs.
This is possible because the container can intercept System Exception. However when an Application Exception
occurs, the container does not intercept it and therefore leaves it to the code to roll back using
ctx.setRollbackOnly().

Be aware that handling exceptions in EJB is different from handling exceptions in Java. The Exception handling
best practice tips are:

 If you cannot recover from System Exception let the container handle it.
 If a business rule is violated then throw an application exception.
 Catch the Exceptions in a proper order.
 It is a poor practice to catch java.lang.Exception because this is a big basket, which will catch all the

unhandled exceptions. It is shown in the above diagrams for illustration purpose only. You should avoid this
because if you add a new piece of code, which throws a new, checked exception, then the compiler won’t pick
it up.

Q 78: What is the difference between optimistic and pessimistic concurrency control? TI
A 78:

Pessimistic Concurrency Optimistic Concurrency
A pessimistic design assumes conflicts will occur in the
database tables and avoids them through exclusive
locks etc.

An optimistic approach assumes conflicts won’t occur, and deal with
them when they do occur.

EJB (also non-EJB) locks the source data until it
completes its transaction.

 Provides reliable access to data.
 Suitable for short transactions.
 Suitable for systems where concurrent access is

rare.

EJB (also non-EJB) implements a strategy to detect whether a
change has occurred. Locks are placed on the database only for a
small portion of the time.

 Suitable for long transactions.
 Suitable for systems requiring frequent concurrent accesses.

The pessimistic locking imposes high locking
overheads on the server and lower concurrency.

The optimistic locking is used in the context of cursors. The
optimistic locking works as follows:

 No locks are acquired as rows are read.
 No locks are acquired while values in the current row are
changed.

 When changes are saved, a copy of the row in the database is
read in the locked mode.

 If the data was changed after it was read into the cursor, an error
is raised so that the transaction can be rolled back and retried.
Note: The testing for changes can be done by comparing the
values, timestamp or version numbers.

Q 79: How can we determine if the data is stale (for example when using optimistic locking)? TI
A 79: We can use the following strategy to determine if the data is stale:

 Adding version numbers

Rolling back Container Managed Transactions

public void depositAmount() throws InsufficientFundExceptiion {
try {
 depositAmount();
}catch (InsufficientFundException e)
 ctx.setRollbackOnly();
 throw new InsufficientFundExceptiion(e.getMessage());
} catch (SQLException e) {
 throw new EJBException(e);
} catch (Exception e) {
 throw new EJBException(e);
}

}

Application Exception is thrown so
the transaction should be rolled back
in the code ctx.setRollbackOnly().

EJBException is a System
Exception so the container will
automatically roll back the
transaction.

Enterprise Java

105

1. Add a version number (Integer) to the underlying table.
2. Carry the version number along with any data read into memory (through value object, entity bean etc).
3. Before performing any update compare the current version number with the database version number.
4. If the version numbers are equal update the data and increment the version number.
5. If the value object or entity bean is carrying an older version number, reject the update and throw an

exception.

Note: You can also do the version number check as part of the update by including the version column in the
where clause of the update without doing a prior select.

 Adding a timestamp to the underlying database table.
 Comparing the data values.

These techniques are also quite useful when implementing data caching to improve performance. Data caches
should regularly keep track of stale data to refresh the cache. These strategies are valid whether you use EJB or
other persistence mechanisms like JDBC, Hibernate etc.

Q 80: What are not allowed within the EJB container? SF
A 80: In order to develop reliable and portable EJB components, the following restrictions apply to EJB code

implementation:

 Avoid using static non-final fields. Declaring all static fields in EJB component as final is recommended. This
enables the EJB container to distribute instances across multiple JVMs.

 Avoid starting a new thread (conflicts with EJB container) or using thread synchronization (allow the EJB
container to distribute instances across multiple JVMs).

 Avoid using AWT or Swing functionality. EJBs are server side business components.

 Avoid using file access/java.io operations. EJB business components are meant to use resource managers
such as JDBC to store and retrieve application data. Also deployment descriptors can be used to store <env-
entry>.

 Avoid accepting or listening to socket connections. EJB components are not meant to provide network socket
functionality. However the specification lets EJB components act as socket clients or RMI clients.

 Avoid using the reflection API. This restriction enforces Java security.

 Can’t use custom class loaders.

Q 81: Discuss EJB container security? SF SE
A 81: EJB components operate inside a container environment and rely heavily on the container to provide security. The

four key services required for the security are:

 Identification: In Java security APIs this identifier is known as a principal.

 Authentication: To prove the identity one must present the credentials in the form of password, swipe card,
digital certificate, finger prints etc.

 Authorisation (Access Control): Every secure system should limit access to particular users. The common

way to enforce access control is by maintaining security roles and privileges.

 Data Confidentiality: This is maintained by encryption of some sort. It is no good to protect your data by
authentication if someone can read the password.

The EJB specification concerns itself exclusively with authorisation (access control). An application using EJB
can specify in an abstract (declarative) and portable way that is allowed to access business methods. The EJB
container handles the following actions:

 Find out the Identity of the caller of a business method.

Enterprise Java

106

 Check the EJB deployment descriptor to see if the identity is a member of a security role that has been
granted the right to call this business method.

 Throw java.rmi.RemoteException if the access is illegal.

 Make the identity and the security role information available for a fine grained programmatic security check.

public void closeAccount() {
 if (ejbContext.getCallerPrincipal().getName() = “SMITH”) {
 //…
 }

 if (!ejbContext .isCallerInRole(CORPORATE_ACCOUNT_MANAGER)) {
 throw new SecurityException(“Not authorized to close this account”);
 }
}

 Optionally log any illegal access.

There are two types of information the EJB developer has to provide through the deployment descriptor.

 Security roles
 Method permissions

Example:

<security-role>
 <description>
 Allowed to open and close accounts
 </description>
 <role-name>account_manager</role-name>
</security-role>
<security-role>
 <description>
 Allowed to read only
 </description>
 <role-name>teller</role-name>
</security-role>

There is a many-to-many relationship between the security roles and the method permissions.

<method-permission>
 <role-name>teller</role-name>
 <method>
 <ejb-name>AccountProcessor</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
</method-permission>

Just as we must declare the resources accessed in our code for other EJBs that we reference in our code we
should also declare the security role we access programmatically to have a fine grained control as shown below.

<security-role-ref>
 <description>
 Allowed to open and close accounts
 </description>
 <role-name>account_manager</role-name>
 <role-link>executive</role-link>
</security-role-ref>

There is also many-to-many relationship between the EJB specific security roles that are in the deployment
descriptor and the application based target security system like LDAP etc. For example there might be more than
one group users and individual users that need to be mapped to a particular EJB security role ‘account_manager’.

Q 82: What are EJB best practices? BP
A 82:

 Use local interfaces that are available in EJB2.0 if you deploy both the EJB client and the EJB in the same
server. Use vendor specific pass-by-reference implementation to make EJB1.1 remote EJBs operate as local.

Enterprise Java

107

[Extreme care should be taken not to affect the functionality by switching the application, which was written
and tested in pass-by-reference mode to pass-by-value without analysing the implications and re-testing the
functionality.

 Wrap entity beans with session beans to reduce network calls (refer Q84 in Enterprise section) and promote
declarative transactions. Where possible use local entity beans and session beans can be either local or
remote. Apply the appropriate EJB design patterns as described in Q83 – Q87 in Enterprise section.

 Cache ejbHome references to avoid JNDI look-up overhead using service locator pattern.

 Handle exceptions appropriately (refer Q76, Q77 in Enterprise section).

 Avoid transaction overhead for non-transactional methods of session beans by declaring transactional
attribute as ‘Supports’.

 Choose plain Java object over EJB if you do not want services like RMI/IIOP, transactions, security,

persistence, thread safety etc. There are alternative frameworks such as Hibernate, Spring etc.

 Choose Servlet’s HttpSession object rather than stateful session bean to maintain client state if you do not
require component architecture of a stateful bean.

 Apply Lazy loading and Dirty marker strategies as described in Q88 in Enterprise section.

Session Bean
(stateless)

Session Bean (stateful) Entity Bean

 Tune the pool size to
avoid overhead of
creation and destruction.

 Use setSessionContext(..)

or ejbCreate(..) method to
cache any bean specific
resources.

 Release any acquired

resources like Database
connection etc in
ejbRemove() method

 Tune the pool size to avoid
overhead of creation and
destruction.

 Set proper time out to avoid
resource congestion.

 Remove it explicitly from
client using remove()
method.

 Use ‘transient’ variable
where possible to avoid
serialization overhead.

 Tune the pool size to avoid overhead of creation and
destruction.

 Use setEntityContext(..) method to cache any bean

specific resources and unsetEntityContext() method to
release acquired resources.

 Use lazy-loading to avoid any unnecessary loading of

dependent data. Use dirty marker to avoid unchanged
data update.

 Commit the data after a transaction completes to reduce

any database calls in between.

 Where possible perform bulk updates, use CMP rather

than BMP, Use direct JDBC (Fast-lane-reader) instead
of entity beans, use of read-only entity beans etc.

Q 83: What is a business delegate? Why should you use a business delegate? DP PI
A 83: Questions Q83 – Q88 are very popular EJB questions.

Problem: When presentation tier components interact directly with the business services components like EJB,
the presentation components are vulnerable to changes in the implementation of business services components.

Solution: Use a Business Delegate to reduce the coupling between the presentation tier components and the
business services tier components. Business Delegate hides the underlying implementation details of the business
service, such as look-up and access details of the EJB architecture.

Business delegate is responsible for:

 Invoking session beans in Session Facade.
 Acting as a service locator and cache home stubs to improve performance.
 Handling exceptions from the server side. (Unchecked exceptions get wrapped into the remote exception,

checked exceptions can be thrown as an application exception or wrapped in the remote exception.
unchecked exceptions do not have to be caught but can be caught and should not be used in the method
signature.)

 Re-trying services for the client (For example when using optimistic locking business delegate will retry the
method call when there is a concurrent access.).

Enterprise Java

108

B u s i n e s s D e l e g a t e

C l ie n t B u s in e s s D e le g a t e

E J B L o o k u p S e r v ic e

B u s in e s s S e r v ic e E J B

3 . lo o k u p / c r e a t e

1 . u s e s

2 . u s e s

4 . u s e s

Q 84: What is a session façade? DP PI
A 84: Problem: Too many method invocations between the client and the server will lead to network overhead, tight

coupling due to dependencies between the client and the server, misuse of server business methods due to fine
grained access etc.

Solution: Use a session bean as a façade to encapsulate the complexities between the client and the server
interactions. The Session Facade manages the business objects, and provides a uniform coarse-grained service
access layer to clients.

Session façade is responsible for

 Improving performance by minimising fine-grained method calls over the network.
 Improving manageability by reducing coupling, exposing uniform interface and exposing fewer methods to

clients.
 Managing transaction and security in a centralised manner.

Q 85: What is a value object pattern? DP PI
A 85: Problem: When a client makes a remote call to the server, there will be a process of network call and serialization

of data involved for the remote invocation. If you make fine grained calls there will be performance degradation.

Solution: Avoid fine-grained method calls by creating a value object, which will help the client, make a coarse-
grained call.

V a lu e O b je c t p a tte rn

W ith o u t V a lu e O b je c t

W ith o u t v a lu e o b je c t 4 re m o te c a lls a re
m a d e to g e t a ll th e re le v a n t in fo

S e rv le t
(c lie n t)

S e s s io n B e a n

g e tF irs tN a m e ()

g e tS u rn a m e ()
g e tG e nd e r()ge tA ge()

W ith V a lu e O b je c t

getG
ender()

ge
tA

ge
()

W ith v a lu e o b je c t 1 re m o te c a ll a n d 4 lo c a l
c a lls a re m a d e to g e t a ll th e re le v a n t in fo .

S
e
r
v
l
e
t
(
c
l
i
e
n
t
)

S e s s io n
B e a n

g e tP e rs o n In fo ()
P e rs o n
V a lu e

O b je c t

ge tS urnam e()

getF irs
tN

ame()

Session Facade

Without Session Facade With Session Facade

Servlet
(client)

network

Entitity Bean 1

Entitity Bean 2

Entitity Bean 3

remote call 1

remote call 2

remote call 3

Servlet
(client)

network

Entitity Bean 1

Entitity Bean 2

Entitity Bean 3

remote call 1

Session Bean
(Stateless)
Session
Facade

local call 1

local call 2

local call 3

Enterprise Java

109

Q 86: What is a fast-lane reader? DP PI
A 86: Problem: Using Entity beans to represent persistent, read only tabular data incurs performance cost at no benefit

(especially when large amount of data to be read).

Solution: Access the persistent data directly from the database using the DAO (Data Access Object) pattern
instead of using Entity beans. The Fast lane readers commonly use JDBC, Connectors etc to access the read-only
data from the data source. The main benefit of this pattern is the faster data retrieval.

Q 87: What is a Service Locator? DP PI
A 87: Problem: J2EE makes use of the JNDI interface to access different resources like JDBC, JMS, EJB etc. The client

looks up for these resources through the JNDI look-up. The JNDI look-up is expensive because the client needs to
get a network connection to the server first. So this look-up process is expensive and redundant.

Solution: To avoid this expensive and redundant process, service objects can be cached when a client performs
the JNDI look-up for the first time and reuse that service object from the cache for the subsequent look-ups. The
service locator pattern implements this technique. Refer to diagram below:

Q 88: Explain lazy loading and dirty marker strategies? DP PI
A 88: Lazy Loading: Lazy loading means not creating an object until the first time it is accessed. This technique is

useful when you have large hierarchies of objects. You can lazy load some of the dependent objects. You only
create the dependent (subordinate) objects only when you need them.

If (this.data = null) {
 //lazy load data
}

For a CMP bean the default scenario is set to no lazy loading and the finder method will execute a single SQL
select statement against the database. So, for example, with the findAllCustomers() method will retrieve all
customer objects with all the CMP fields in each customer object.

S e rv ic e L o c a to r

W ith o u t S e rv ic e L o c a to r

S e rv le t
(c lie n t -1)

S e rv le t
(c lie n t - 2)

S e rv le t
(c lie n t - 3)

J N D I

loo k up

lo o k u p

lookup

W ith o u t s e rv ic e lo c a to r lo o k u p e v e ry tim e
fro m th e J N D I

W ith S e rv ic e L o c a to r

S e rv le t
(c lie n t -1)

S e rv le t
(c lie n t - 2)

S e rv le t
(c lie n t - 3)

J N D I

S e rv ic e
L o c a to r

lookup

lo o k u p

loo
ku

p

lo o k u p f irs t t im e o n ly

W ith s e rv ic e lo c a to r lo o k u p f irs t t im e fro m
th e J N D I a n d s e c o n d tim e o n w a rd s lo o k u p
fro m th e c a c h e in th e s e rv ic e lo c a to r.

Fast Lane Reader

J2EE Server

EJB Container
Web Container

Data Access Object

Session Bean Entity Bean

DataSource

Servlet
(client)

normal lane
normal lane

Fast Lane Reader Fast Lane

Use Fast Lane Reader for read only access and the normal lane for read/write access to the DataSource.

Enterprise Java

110

If you turn on lazy loading then only the primary keys of the objects within the finder are returned. Only when you
access the object, the container uploads the actual object based on the primary key. You may want to turn on the
lazy loading feature if the number of objects that you are retrieving is so large that loading them all into local cache
would adversely affect the performance. (Note: The implementation of lazy loading strategy may vary from
container vendor to vendor).

Dirty Marker (Store optimisation): This strategy allows us to persist only the entity beans that have been
modified. The dependent objects need not be persisted if they have not been modified. This is achieved by using a
dirty flag to mark an object whose contents have been modified. The container will check every dependent object
and will persist only those objects that are dirty. Once it is persisted its dirty flag will be cleared. (Note: The
implementation of dirty marker strategy may vary from container vendor to vendor).

Note: If your job requires a very good understanding of EJB 2.x then following books are recommended:
 Mastering Enterprise JavaBeans – by Ed Roman
 EJB Design Patterns – by Floyd Marinescu

Enterprise - JMS

Q 89: What is Message Oriented Middleware? What is JMS? SF
A 89: Message Oriented Middleware (MOM) is generally defined as a software infrastructure that asynchronously

communicates with other disparate systems through the production and consumption of messages. A message
may be a request, a report, or an event sent from one part of an enterprise application to another.

Messaging enables loosely coupled distributed communication. A component sends a message to a destination,
and the recipient can retrieve the message from the destination. However, the sender and the receiver do not
have to be available at the same time in order to communicate and also they are not aware of each other. In fact,
the sender does not need to know anything about the receiver; nor does the receiver need to know anything about
the sender. The sender and the receiver need to know only what message format and what destination to use. In
this respect, messaging differs from tightly coupled technologies, such as Remote Method Invocation (RMI), which
requires an application to know a remote application's methods.

Message Oriented Middleware (MOM) systems like MQSeries, MQSonic, etc are proprietary systems. Java
Message Service (JMS) is a Java API that allows applications to create, send, receive, and read messages in a
standard way. Designed by Sun and several partner companies, the JMS API defines a common set of interfaces
and associated semantics that allow programs written in the Java programming language to communicate with
other messaging implementations (e.g. MQSonic, TIBCO etc). The JMS API minimises the set of concepts a
programmer must learn to use messaging products but provides enough features to support sophisticated
messaging applications. It also strives to maximise the portability of JMS applications across JMS providers.

Companies have spent decades developing their legacy systems. Rather than throwing these systems out, XML
can be used in a non-proprietary way to move data from legacy systems to distributed systems like J2EE over the
wire-using MOM and JMS.

How JMS is different from RPC?

Remote Procedure Call (e.g. RMI) JMS

Remote Procedure Call (RPC) technologies like RMI
attempt to mimic the behaviour of system that runs in one
process. When a remote procedure is invoked the caller is
blocked until the procedure completes and returns control
to the caller. This is a synchronized model where process
is performed sequentially ensuring that tasks are
completed in a predefined order. The synchronized nature
of RPC tightly couples the client (the software making the
call) to the server (the software servicing the call). The
client can not proceed (its blocked) until the server
responds. The tightly coupled nature of RPC creates
highly interdependent systems where a failure on one
system has an immediate impact on other systems.

With the use of Message Oriented Middleware (MOM), problems
with the availability of subsystems are less of an issue. A
fundamental concept of MOM is that communications between
components is intended to be asynchronous in nature. Code that
is written to connect the pieces together assumes that there is a
one-way message that requires no immediate response. In other
words, there is no blocking. Once a message is sent the sender
can move on to other tasks; it doesn't have to wait for a
response. This is the major difference between RPC and
asynchronous messaging and is critical to understanding the
advantages offered by MOM systems.

In an asynchronous messaging system each subsystem
(Customer, Account etc) is decoupled from the other systems.
They communicate through the messaging server, so that a
failure in one does not impact the operation of the others.

Enterprise Java

111

Client is blocked while it is being processed. Asynchronous messages also allows for parallel processing i.e.
client can continue processing while the previous request is
being satisfied.

Are messaging applications slow? While there is some overhead in all messaging systems, but this does not
mean that the applications that are using messaging are necessarily slow. Messaging systems can achieve a
throughput of 100 messages per second depending on the installation, messaging modes (synchronous versus
asynchronous, persistent versus non-persistent), and acknowledgment options such as auto mode, duplicates
okay mode, and client mode etc. The asynchronous mode can significantly boost performance by multi-tasking.
For example: In an Internet based shopping cart application, while a customer is adding items to his/her shopping
cart, your application can trigger an inventory checking component, and a customer data retrieval component to
execute concurrently.

Are messaging applications reliable? This is basically a trade-off between performance and reliability. If
reliability is more important then the:

 Acknowledgment option should be set to automode where once only delivery is guaranteed
 Message delivery mode should be set to persistent where the MOM writes the messages to a secure

storage like a database or a file system to insure that the message is not lost in transit due to a system
failure.

What are some of the key message characteristics defined in a message header?

Characteristic Explanation
JMSCorrelationID Used in request/response situations where a JMS client can use the JMSCorrelationID header to

associate one message with another. For example: a client request can be matched with a response
from a server based on the JMSCorrelationID.

JMSMessageID Uniquely identifies a message in the MOM environment.
JMSDeliveryMode This header field contains the delivery modes: PERSISTENT or NON_PERSISTENT.
JMSExpiration This contains the time-to-live value for a message. If it is set to zero, then a message will never expire.
JMSPriority Sets the message priority but the actual meaning of prioritization is MOM vendor dependent.

What are the different body types (aka payload types) supported for messages? All JMS messages are
read-only once posted to a queue or a topic.

 Text message: body consists of java.lang.String.
 Map message: body consists of key-value pairs.
 Stream message: body consists of streams of Java primitive values, which are accessed sequentially.

XML documents make use of this type.
 Object message: body consists of a Serializable Java object.
 Byte message: body consists of arbitrary stream of bytes.

What is a message broker?

A message broker acts as a server in a MOM. A message broker performs the following operations on a message
it receives:

 Processes message header information.
 Performs security checks and encryption/decryption of a received message.
 Handles errors and exceptions.
 Routes message header and the payload (aka message body).
 Invokes a method with the payload contained in the incoming message (e.g. calling onMessage(..) method

on a Message Driven Bean (MDB)).
 Transforms the message to some other format. For example XML payload can be converted to other

formats like HTML etc with XSLT.

Q 90: What type of messaging is provided by JMS? SF
A 90: Point-to-Point: provides a traditional queue based mechanism where the client application sends a message

through a queue to typically one receiving client that receives messages sequentially. A JMS message queue is
an administered object that represents the message destination for the sender and the message source for the
receiver.

Enterprise Java

112

Publish/Subscribe: is a one-to-many publishing model where client applications publish messages to topics,
which are in turn subscribed by other interested clients. All subscribed clients will receive each message.

Q 91: Discuss some of the design decisions you need to make regarding your message delivery? SF DC
A 91:

During your design phase, you should carefully consider various options or modes like message acknowledgment
modes, transaction modes and delivery modes. For example: for a simple approach you would not be using
transactions and instead you would be using acknowledgment modes. If you need reliability then the delivery
mode should be set to persistent. This can adversely affect performance but reliability is increased.

Design
decision

Explanation

Message
acknowledgm
ent options or
modes.

Acknowledgement mode and transaction modes are used to determine if a message will be lost or
re-delivered on failure during message processing by the target application. Acknowledgment
modes are set when creating a JMS session.

InitialContext ic = new InitialContext(…);
QueueConnectionFactory qcf = (QueueConnectionFactory)ic.lookup(“AccountConnectionFactory”);
QueueConnection qc = qcf.createQueueConnection();
QueueSession session = qc.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

the above code sample, the transaction mode is set to false and acknowledgment mode is set to auto
mode. Let us look at acknowledgment modes:

AUTO_ACKNOWLEDGE: The messages sent or received from the session are automatically
acknowledged. This mode also guarantees once only delivery. If a failure occurs while executing
onMessage() method of the destination MDB, then the message is re-delivered. A message is
automatically acknowledged when it successfully returns from the onMessage(…) method.

DUPS_OK_ACKNOWLEDGE: This is just like AUTO_ACKNOWLEDGE mode, but under rare
circumstances like during failure recovery messages might be delivered more than once. If a failure occurs
then the message is re-delivered. This mode has fewer overheads than AUTO_ACKNOWLEDGE mode.

CLIENT_ACKNOWLEDGE: The messages sent or received from sessions are not automatically
acknowledged. The destination application must acknowledge the message receipt. This mode gives an
application full control over message acknowledgment at the cost of increased complexity. This can be
acknowledged by invoking the acknowledge() method on javax.jms.Message class.

Transaction
modes

In JMS, a transaction organizes a message or a group of messages into an atomic processing unit. So, if a
message delivery is failed, then the failed message may be re-delivered. Calling the commit() method
commits all the messages the session receives and calling the rollback method rejects all the messages.

InitialContext ic = new InitialContext(…);
QueueConnectionFactory qcf = (QueueConnectionFactory)ic.lookup(“AccountConnectionFactory”);
QueueConnection qc = qcf.createQueueConnection();
QueueSession session = qc.createQueueSession(true, -1);

In the above code sample, the transaction mode is set to true and acknowledgment mode is set to -1,
which means acknowledgment mode has no use in this mode. Let us look at transaction modes:

Message Driven Bean (MDB) with container managed transaction demarcation: An MDB participates
in a container transaction by specifying the transaction attributes in its deployment descriptor. A transaction
automatically starts when the JMS provider removes the message from the destination and delivers it to
the MDB’s onMessage(…) method. Transaction is committed on successful completion of the onMessage()
method. A MDB can notify the container that a transaction should be rolled back by setting the
MessageDrivenContext to setRollBackOnly(). When a transaction is rolled back, the message is re-
delivered.

public void onMessage(Message aMessage) {
 …
 If(someCondtionIsTrue) {
 mdbContext.setRollbackOnly();
 }
 else{
 //everything is good. Transaction will be committed automatically on completion of onMessage(..)

method.
 }
}

Message Driven Bean (MDB) with bean managed transaction demarcation: A MDB chooses not to

Enterprise Java

113

participate in a container managed transaction and the MDB programmer has to design and code
programmatic transactions. This is achieved by creating a UserTransaction object from the MDB’s
MessageDrivenContext as shown below and then invoking the commit() and rollback() methods on this
UserTransaction object.

public void onMessage(Message aMessage) {

 UserTransaction uT = mdbContext.getUserTransaction();
 uT.begin();
 ….
 If(someCondtionIsTrue) {
 uT.rollback();
 }
 else{
 uT.commit();
 }
}

Transacted session: An application completely controls the message delivery by either committing or
rolling back the session. An application indicates successful message processing by invoking Session
class’s commit() method. Also it can reject a message by invoking Session class’s rollback() method. This
committing or rollback is applicable to all the messages received by the session.

public void process(Message aMessage, QueueSession qs) {
 ….
 If(someCondtionIsTrue) {
 qs.rollback();
 }
 else{
 qs.commit();
 }
…
}

What happens to rolled-back messages?

Rolled back messages are re-delivered based on the re-delivery count parameter set on the JMS
provider. The re-delivery count parameter is very important because some messages can never be
successful and this can eventually crash the system. When a message reaches its re-delivery count, the
JMS provider can either log the message or forward the message to an error destination. Usually it is not
advisable to retry delivering the message soon after it has been rolled-back because the target application
might still not be ready. So we can specify a time to re-deliver parameter to delay the re-delivery process
by certain amount of time. This time delay allows the JMS provider and the target application to recover to
a stable operational condition.

Care should be taken not to make use of a single transaction when using the JMS request/response
paradigm where a JMS message is sent, followed by the synchronous receipt of a reply to that message.
This is because a JMS message is not delivered to its destination until the transaction commits, and the
receipt of the reply will never take place within the same transaction.

Note: when you perform a JNDI lookup for administered objects like connection factories, topics and/or
queues, you should use the logical reference java:comp/env/jms as the environment subcontext. It is also
vital to release the JMS resources like connection factories, sessions, queues, topics etc when they are no
longer required in a try{} and finally{} block.

Message
delivery
options

What happens, when the messages are with the JMS provider (i.e. MOM) and a catastrophic failure occurs
prior to delivering the messages to the destination application? The messages will be lost if they are non-
durable. The message’s state whether they are lost or not does not depend on acknowledgment modes
or transaction modes discussed above. It depends on the delivery mode, which defines whether the
message can be durable (aka persistent) or non-durable (aka non-persistent). If you choose the durable
delivery mode then the message is stored into a database or a file system by the JMS server before
delivering it to the consumer. Durable messages have an adverse effect on performance, but ensure that
message delivery is guaranteed.

InitialContext ic = new InitialContext(…);
QueueConnectionFactory qcf = (QueueConnectionFactory)ic.lookup(“AccountConnectionFactory”);
QueueConnection qc = qcf.createQueueConnection();
QueueSession session = qc.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
//senderQueue is an object of type javax.jms.Queue
QueueSender sender = session.createSender(senderQueue);
Sender.send(message, intDeliveryMode, intPriority, longTimeToLove);

Best practices A JMS connection represents a TCP/IP connection from the client to the JMS server. A connection is

Enterprise Java

114

to improve
performance

a valuable resource, which should be opened at the appropriate time, should be used concurrently by
creating and using pool of sessions, and close the connection in a finally{} block when finished.

 Optimize your JMS sessions with the appropriate acknowledgment mode and transaction mode as

discussed above and close your sessions when you are finished with them.

 Choose your message type (text message, byte message, stream message etc) carefully because the

size of a message depends on its type and size can affect performance. For example byte messages
takes less space than text messages and for object messages you can reduce the serialization cost by
marking some of the variables which need not be sent over the network as transient.

 Optimize your destinations like queues and topics as follows:

 Choose a non-durable (aka non-persistent) delivery mode where appropriate.
 Set time to live parameter appropriately after which the message expires.
 Where applicable receive messages asynchronously (non-blocking call). If you want to receive

messages synchronously you can use one of the following methods on the message consumer:

receive(); blocks the call until it receives the next message.
receive(long timeout); blocks till a timeout occurs.
receiveNoWait(); never blocks.

Q 92: Give an example of a J2EE application using Message Driven Bean with JMS? SF
A 92:

Enterprise - XML

What is XML? And why is XML important? XML stands for eXtensible Markup Language. XML is a grammatical
system for constructing custom markup languages for describing business data, mathematical data, chemical data etc.
XML loosely couples disparate applications or systems utilizing JMS, Web services etc. XML uses the same
building blocks that HTML does: elements, attributes and values. Let’s look at why XML is important.

Scalable: Since XML is not in a binary format you can create and edit files with anything and it’s also easy to debug. XML
can be used to efficiently store small amounts of data like configuration files (web.xml, application.xml, struts-config.xml
etc) to large company wide data with the help of XML stored in the database.

Fast Access: XML documents benefit from their hierarchical structure. Hierarchical structures are generally faster to
access because you can drill down to the section you are interested in.

Easy to identify and use: XML not only displays the data but also tells you what kind of data you have. The mark up
tags identifies and groups the information so that different information can be identified by different application.

Messgage Driven Beans

J2EE Server

EJB Container
Web Container

Session BeanServlet
(client)

EJB Container

Message
DrivenBean

Topic

Message pu
bl

is
he

s

De
liv

er
s

(to
 th

e
su

bs
cr

ib
er

)

Message

The MessageDrivenBean is the consumer
of the message.

Enterprise Java

115

Stylability: XML is style-free and whenever different styles of output are required the same XML can be used with
different style-sheets (XSL) to produce output in XHTML, PDF, TEXT, another XML format etc.

Linkability, in-line useability, universally accepted standard with free/inexpensive tools etc

Q 93: What is the difference between a SAX parser and a DOM parser? SF PI MI
A 93:

SAX parser DOM parser
A SAX (Simple API for XML) parser does not create any
internal structure. Instead, it takes the occurrences of
components of an input document as events (i.e., event
driven), and tells the client what it reads as it reads through
the input document.

A DOM (Document Object Model) parser creates a tree
structure in memory from an input document and then waits
for requests from client.

A SAX parser serves the client application always only with
pieces of the document at any given time.

A DOM parser always serves the client application with the
entire document no matter how much is actually needed by the
client.

A SAX parser, however, is much more space efficient in
case of a big input document (because it creates no internal
structure). What's more, it runs faster and is easier to learn
than DOM parser because its API is really simple. But from
the functionality point of view, it provides a fewer functions,
which means that the users themselves have to take care of
more, such as creating their own data structures.

A DOM parser is rich in functionality. It creates a DOM tree in
memory and allows you to access any part of the document
repeatedly and allows you to modify the DOM tree. But it is
space inefficient when the document is huge, and it takes a
little bit longer to learn how to work with it.

Use SAX parser when

 Input document is too big for available memory.

 When only a part of the document is to be read and we

create the data structures of our own.

 If you use SAX, you are using much less memory and

performing much less dynamic memory allocation.

Use DOM when

 Your application has to access various parts of the

document and using your own structure is just as
complicated as the DOM tree.

 Your application has to change the tree very frequently

and data has to be stored for a significant amount of time.

SAX Parser example: Xerces, Crimson etc

Use JAXP (Java API for XML Parsing) which enables
applications to parse and transform XML documents
independent of the particular XML parser. Code can be
developed with one SAX parser in mind and later on can be
changed to another SAX parser without changing the
application code.

DOM Parser example: XercesDOM, SunDOM, OracleDOM
etc.

Use JAXP (Java API for XML Parsing) which enables
applications to parse and transform XML documents
independent of the particular XML parser. Code can be
developed with one DOM parser in mind and later on can be
changed to another DOM parser without changing the
application code.

Q 94: Which is better to store data as elements or as attributes? SF
A 94: A question arising in the mind of XML/DTD designers is whether to model and encode certain information using an

element, or alternatively, using an attribute. The answer to the above question is not clear-cut. But the general
guideline is:

 Using an element: <book><title>Lord of the Rings</title>...</book>: If you consider the information in

question to be part of the essential material that is being expressed or communicated in the XML, put it in an
element

 Using an attribute: <book title=" Lord of the Rings "/>: If you consider the information to be peripheral or

incidental to the main communication, or purely intended to help applications process the main
communication, use attributes.

The principle is data goes in elements and metadata goes in attributes. Elements are also useful when they
contain special characters like “<”, “>”, etc which are harder to use in attributes.

Q 95: What is XPATH? What is XSLT/XSL/XSL-FO/XSD/DTD etc? What is JAXB? What is JAXP? SF
A 95:

Enterprise Java

116

What
is

Explanation Example

XML XML stands for eXtensible Markup Language Sample.xml

<?xml version="1.0"?>
<note>
 <to>Peter</to>
 <from>Paul</from>
 <title>Invite</title>
 <content language=”English”>Not Much</content>
 < content language=”Spanish”>No Mucho</content >
</note>

DTD DTD stands for Document Type Definition. XML provides
an application independent way of sharing data. With a
DTD, independent groups of people can agree to use a
common DTD for interchanging data. Your application can
use a standard DTD to verify that data that you receive
from the outside world is valid. You can also use a DTD to
verify your own data. So the DTD is the building blocks or
schema definition of the XML document.

Sample.dtd

<!ELEMENT note (to, from, title, content)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT content (#PCDATA)>
<!ATTLIST content language CDATA #Required>

XSD XSD stands for Xml Schema Definition, which is a
successor of DTD. So XSD is a building block of an XML
document.

If you have DTD then why use XSD you may ask?

XSD is more powerful and extensible than DTD. XSD has:

• Support for simple and complex data types.
• Uses XML syntax. So XSD are extensible just like

XML because they are written in XML.
• Better data communication with the help of data

types. For example a date like 03-04-2005 will be
interpreted in some countries as 3rd of April 2005 and
in some other countries as 04th March 2005.

Sample.xsd

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.w3schools.com"
xmlns="http://www.w3schools.com"
elementFormDefault="qualified">

<xs:element name="note">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="to" type="xs:string"/>
 <xs:element name="from" type="xs:string"/>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="content" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:attribute name="language" type=”xs:string”
 use=”Required” />
</xs:element>

</xs:schema>

XSL XSL stands for eXtensible Stylesheet Language. The XSL
consists of 3 parts:

• XSLT: Language for transforming XML documents

from one to another.

• XPath: Language for defining the parts of an XML

document.

• XSL-FO: Language for formatting XML documents.

For example to convert an XML document to a PDF
document etc.

XSL can be thought of as a set of languages that can :

• Define parts of an XML
• Transform an XML document to XHTML (eXtensible

Hyper Text Markup Language) document.
• Convert an XML document to a PDF document.
• Filter and sort XML data.

XSLT processor example: Xalan (From Apache)

PDF Processor example: FOP (Formatting Objects
Processor from Apache)

To convert the Sample.xml file to a XHTML file let us apply the
following Sample.xsl through XALAN parser.

Sample.xsl

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
 <xsl:template match="/">
 <xsl:apply-templates select="note " />
 </xsl:template>

 <xsl:template match="note">
 <html>
 <head>
 <title><xsl:value-of
 select="content/@language">
 </title>
 </head>
 </html>
 </xsl:template>
</xsl:stylesheet>

You get the following output XHTML file:

Sample.xhtml

<html>
 <head>
 <title>English</title>

Enterprise Java

117

 </head>
</html>

Now to convert the Sample.xml into a PDF file apply the
following FO (Formatting Objects) file Through the FOP
processor.

Sample.fo

<?xml version="1.0" encoding="ISO-8859-1"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<fo:layout-master-set>
 <fo:simple-page-master master-name="A4">
 </fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-reference="A4">
 <fo:flow flow-name="xsl-region-body">
 <fo:block>
 <xsl:value-of select="content[@language='English']">
 </fo:block>
 </fo:flow>
</fo:page-sequence>
</fo:root>

which gives a basic Sample.pdf which has the following line

Not Much

XPath Xml Path Language, a language for addressing parts of an
XML document, designed to be used by both XSLT and
XPointer. We can write both the patterns (context-free) and
expressions using the XPATH Syntax. XPATH is also used
in XQuery.

As per Sample.xsl

<xsl:template match=”content[@language=’English’]”>
………
<td><xsl:value-of select=”content/@language” /></td>

JAXP Stands for Java API for XML Processing. This provides a
common interface for creating and using SAX, DOM, and
XSLT APIs in Java regardless of which vendor’s
implementation is actually being used (just like the JDBC,
JNDI interfaces). JAXP has the following packages:

DOM example using JAXP:

DocumentBuilderFactory dbf =
 DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();
Document doc =
 db.parse(new File("xml/Test.xml"));
NodeList nl = doc.getElementsByTagName("to");
Node n = nl.item(0);
System.out.println(n.getFirstChild().getNodeValue());

SAX example using JAXP:

SAXParserFactory spf =
 SAXParserFactory.newInstance();
SAXParser sp = spf.newSAXParser();
SAXExample se = new SAXExample();
sp.parse(new File("xml/Sample.xml"),se);

where SAXExample.Java code snippet

public class SAXExample extends DefaultHandler {

 public void startElement(
 String uri,
 String localName,
 String qName,
 Attributes attr)
 throws SAXException {

 System.out.println("--->" + qName);
 }
 ...

}

Enterprise Java

118

JAXP

SAXParser
Factory

SAXParser

XML
Sample.

xml
S

AX
R

ea
de

r
SA

XE
xa

m
pl

e

Content
Handler

Error
Handler

DTD
Handler
Entity

Resolver

implements

XML
Sample.

xml

DocumentBuilder
Factory

Document
Builder

Document
(DOM)

note

to from

Source
sample.

xml

Transformer
Factory

Transformer
Result
sample.
xhtml

Transformation
instructions
sample.xsl

• javax.xml.parsers common interface for different

vendors of SAX, DOM parsers).
• org.xml.sax Defines basic SAX API.
• org.w3c.dom Defines Document Object Model and

its componenets.
• javax.xml.transform Defines the XSLT API which

allows you to transform XML into other forms like
PDF, XHTML etc.

Required JAR files are jaxp.jar, dom.jar, xalan.jar,
xercesImpl.jar.

The DefaultHandler implements ContentHandler,
DTDHandler, EntityResolver, ErrorHandler

XSLT example using JAXP:

StreamSource xml =
 new StreamSource(new File("/xml/Sample.xml"));
StreamSource xsl = new StreamSource(
 new File("xml/Sample.xsl"));
StreamResult result =
 new StreamResult(new File("xml/Sample.xhtml"));

TransformerFactory tf =
 TransformerFactory.newInstance();
Transformer t = tf.newTransformer(xsl);
t.transform(xml, result);

This gives you Sample.xhtml

<html>
 <head>
 <title>English</title>
 </head>
</html>

JAXB Stands for Java API for XML Binding. This standard
defines a mechanism for writing out Java objects as XML
(marshalling) and for creating Java objects from
XMLstructures (unmarshalling). (You compile a class
description to create the Java classes, and use those
classes in your application.)

Lets look at some code:

For binding:

xjc.sh –p com.binding sample.xsd –d work

-p identifies the package for the generated Java files (ie
*.Java)

-d option identifies the target.

Unmarshalling the XML document:

JAXBContext jc = JAXBContext.newInstance(
 “com.binding”);
Unmarshaller um = jc.createUnmarshaller();
Object o = um.unMarshall(
 new File(“/xml/”));

Enterprise Java

119

JAXB

XML
schema

Sample.xsd

Java files
(*.java interfaces

&
implementations)

Java
class files

*.class

Application

JAXB
API

XML
Sample.

xml

Java content
Objects
note

to from

us
e

ja
va

c
xj

c
bi

nd
in

g
co

m
pi

le
r

marshall

unmarshall

Note n = (Note) n;
System.out.println(n.getFrom().getContent().get(0));
System.out.println(n.getTo().getContent().get(0));

Now to modify the in memory object content:

n. getFrom().getContent().set(0, “newValue”);

Marshalling the change back to different XML file:

Marshaller m = jc.createMarshaller();

FileOutputStream fos = new FileOutputStream(
 new File(“/xml/SampleNew.xml”));

m.marshall(n, fos);

Enterprise – SQL, Tuning and O/R mapping

Q 96: Explain inner and outer joins? SF
A 96: Joins allow database users to combine data from one table with data from one or more other tables (or views, or

synonyms). Tables are joined two at a time making a new table containing all possible combinations of rows from
the original two tables. Lets take an example (syntax vary among RDBMS):

Joins and Set operations in Relational Databases

Inner join Left outer join Right outer join Full outer join

Enterprise Java

120

Employees table
Id firstname Surname state
1001 John Darcy NSW
1002 Peter Smith NSW
1003 Paul Gregor NSW
1004 Sam Darcy VIC

Executives table

Id firstname Surname state
1001 John Darcy NSW
1002 Peter Smith NSW
1005 John Gregor WA

Inner joins: Chooses the join criteria using any column names that happen to match between the two tables. The
example below displays only the employees who are executives as well.

SELECT emp.firstname, exec.surname FROM employees emp, executives exec
WHERE emp.id = exec.id;

The output is:

Firstname surname
John Darcy
Peter Smith

Left Outer joins: A problem with the inner join is that only rows that match between tables are returned. The
example below will show all the employees and fill the null data for the executives.

SELECT emp.firstname, exec.surname FROM employees emp left join executives exec
ON emp.id = exec.id;

On oracle
SELECT emp.firstname, exec.surname FROM employees emp, executives exec
 where emp.id = exec.id(+);

The output is:

Firstname surname
John Darcy
Peter Smith
Paul
Sam

Right Outer join: A problem with the inner join is that only rows that match between tables are returned. The
example below will show all the executives and fill the null data for the employees.

SELECT emp.firstname, exec.surname FROM employees emp right join executives exec
 ON emp.id = exec.id;

On oracle
SELECT emp.firstname, exec.surname FROM employees emp, executives exec
 WHERE emp.id(+) = exec.id;

The output is:

Firstname surname
John Darcy
Peter Smith
 Gregor

Full outer join: To cause SQL to create both sides of the join

SELECT emp.firstname, exec.surname FROM employees emp full join executives exec
ON emp.id = exec.id;

On oracle
SELECT emp.firstname, exec.surname FROM employees emp, executives exec
 WHERE emp.id = exec.id (+)

Enterprise Java

121

UNION

SELECT emp.firstname, exec.surname FROM employees emp, executives exec
 WHERE emp.id(+) = exec.id

Note: Oracle9i introduced the ANSI compliant join syntax. This new join syntax uses the new keywords inner join, left outer join,
right outer join, and full outer join, instead of the (+) operator.

The output is:

Firstname surname
John Darcy
Paul
Peter Smith
Sam
 Gregor

Self join: A self-join is a join of a table to itself. If you want to find out all the employees who live in the same city
as employees whose first name starts with “Peter”, then one way is to use a sub-query as shown below:

SELECT emp.firstname, emp.surname FROM employees emp WHERE
 city IN (SELECT city FROM employees where firstname like ‘Peter’)

The sub-queries can degrade performance. So alternatively we can use a self-join to achieve the same results.

On oracle
SELECT emp.firstname, emp.surname FROM employees emp, employees emp2
 WHERE emp.state = emp2.state
 AND emp2.firstname LIKE 'Peter'

The output is:

Firstname Surname
John Darcy
Peter Smith
Paul Gregor

Q 97: Explain a sub-query? How does a sub-query impact on performance? SF PI
A 97: It is possible to embed a SQL statement within another. When this is done on the WHERE or the HAVING

statements, we have a subquery construct. What is subquery useful for? It is used to join tables and there are
cases where the only way to correlate two tables is through a subquery.

SELECT emp.firstname, emp.surname FROM employees emp WHERE
emp.id NOT IN (SELECT id FROM executives);

There are performance problems with sub-queries, which may return NULL values. The above sub-query can be
re-written as shown below by invoking a correlated sub-query:

SELECT emp.firstname, emp.surname FROM employees emp WHERE
emp.id NOT EXISTS (SELECT id FROM executives);

The above query can be re-written as an outer join for a faster performance as shown below:

SELECT emp.firstname, exec.surname FROM employees emp left join executives exec
on emp.id = exec.id AND exec.id IS NULL;

The above execution plan will be faster by eliminating the sub-query.

Q 98: What is normalization? When to denormalize? DC PI
A 98: Normalization is a design technique that is widely used as a guide in designing relational databases. Normalization

is essentially a two step process that puts data into tabular form by removing repeating groups and then removes
duplicated data from the relational tables (Additional reading recommended).

Redundant data wastes disk space and creates maintenance problems. If data that exists in more than one place
must be changed, the data must be changed in exactly the same way in all locations which is time consuming and
prone to errors. A change to a customer address is much easier to do if that data is stored only in the Customers
table and nowhere else in the database.

Enterprise Java

122

Inconsistent dependency is a database design that makes certain assumptions about the location of data. For
example, while it is intuitive for a user to look in the Customers table for the address of a particular customer, it
may not make sense to look there for the salary of the employee who calls on that customer. The employee's
salary is related to, or dependent on, the employee and thus should be moved to the Employees table.
Inconsistent dependencies can make data difficult to access because the path to find the data may not be logical,
or may be missing or broken.

First normal form Second Normal Form Third Normal Form
A database is said to be in First
Normal Form when all entities
have a unique identifier or key,
and when every column in every
table contains only a single value
and doesn't contain a repeating
group or composite field.

A database is in Second Normal Form
when it is in First Normal Form plus
every non-primary key column in the
table must depend on the entire primary
key, not just part of it, assuming that the
primary key is made up of composite
columns.

A database is in Third Normal Form when
it is in Second Normal Form and each
column that isn't part of the primary key
doesn't depend on another column that
isn't part of the primary key.

When to denormalize? Normalize for accuracy and denormalize for performance.

Typically, transactional databases are highly normalized. This means that redundant data is eliminated and
replaced with keys in a one-to-many relationship. Data that is highly normalized is constrained by the primary
key/foreign key relationship, and thus has a high degree of data integrity. Denormalized data, on the other hand,
creates redundancies; this means that it's possible for denormalized data to lose track of some of the relationships
between atomic data items. However, since all the data for a query is (usually) stored in a single row in the table, it
is much faster to retrieve.

Q 99: How do you implement one-to-one, one-to-many and many-to-many relationships while designing tables? SF
A 99: One-to-One relationship can be implemented as a single table and rarely as two tables with primary and foreign

key relationships.

One-to-Many relationships are implemented by splitting the data into two tables with primary key and foreign key
relationships.

Many-to-Many relationships are implemented using join table with the keys from both the tables forming the
composite primary key of the junction table.

Q 100: How can you performance tune your database? PI
A 100:

 Denormalize your tables where appropriate.
 Proper use of index columns: An index based on numeric fields is more efficient than an index based on

character columns.
 Reduce the number of columns that make up a composite key.
 Proper partitioning of tablespaces and create a special tablespace for special data types like CLOB,

BLOB etc.
 Data access performance can be tuned by using stored procedures to crunch data in the database server

to reduce the network overhead and also caching data within your application to reduce the number of
accesses.

Q 101: How will you map objects to a relational database? How will you map class inheritance to relational data model?

DC
A 101: Due to impedance mismatch between object and relational technology you need to understand the process of

mapping classes (objects) and their relationships to tables and relationships between them in a database.
Classes represent both behaviour and data whereas relational database tables just implement data. Database
schemas have keys (primary keys to uniquely identify rows and foreign keys to maintain relationships between
rows) whereas object schema does not have keys and instead use references to implement relationships to
other objects. Let us look at some basic points on mapping:

Enterprise Java

123

-EmployeeId (PK)
-EmployeeType
-Name
-Salary
-Rate
-Period

Employee
-EmployeeId (PK)
-IsPermanent
-IsContractor
-IsSubContractor
-Name
-Salary
-Rate
-Period

Employee

-EmployeeId (PK)
-Name

Employee

-EmployeeId (PK)
-Salary

Permanent
-EmployeeId (PK)
-Contract

Contractor

-EmployeeId (PK)
-Period

SubContractor

-EmployeeId (PK)
-Name
-Salary

Permanent
-EmployeeId (PK)
-Name
-Contract

Contractor

-EmployeeId (PK)
-Name
-Period

SubContractor

Object to Relational (O/R) mapping of class inheritance structure

+getRate()
-rate

Contractor

+getName()

-name
-address

Employee

+getSalary()
-salary

Permanent

+calculateTotal()
-period
SubContractor

-streetname
Address

1*

Class diagram

Map class hierarchy to a single database table

Refactored

Map each class to its own table

Map each concrete class to its own table

 Classes map to tables in a way but not always directly.
 An attribute of a class can be mapped to zero or more columns in a database. Not all attributes are

persistent.
 Some attributes of an object are objects itself. For example an Employee object has an Address object as

an attribute. This is basically an association relationship between two objects (i.e. Employee and
Address). This is a recursive relationship where at some point the attribute will be mapped to zero or
more columns. In this example attributes of the Address class will be mapped zero or more columns.

 In its simple form an attribute maps to a single column whereas each has same type (ie attribute is a

string and column is a char, or both are dates etc). When you implement mapping with different types
(attribute is a currency and column is a float) then you will need to be able to convert them back and forth.

How do you map inheritance class structure to relational data model?

Relational databases do not support inheritance. Class inheritance can be mapped to relational tables as
follows:

Map class hierarchy to single database table: The whole class hierarchy can be stored in a single table by
adding an additional column named “EmployeeType”. The column “EmployeeType” will hold the values
“Permanent”, “Contract” and “SubContract”. New employee types can be added as required. Although this
approach is straightforward it tends to break when you have combinations like an employee is of type both
“Contractor” and “SubContractor”. So when you have combinations, you can use refactored table by replacing
type code column “EmployeeType” with boolean values such as isPermanent, isContractor and isSubContractor.

Map each class to its own table: You create one table per class. The data for a permanent employee is stored
in two tables (Employee and Permanent), therefore to retrieve this data you need to join these two tables. To
support additional employee type say a Contractor, add a new table.

Enterprise Java

124

Map each concrete class to its own table: You create one table per concrete class. There are tables
corresponding to each class like Permanent, Contractor and SubContractor. So join is not required. To support
additional employee type, add a new table.

So which approach to use? Easiest approach is to have one table per hierarchy and easy to refactor. If you
need a “pure design approach” then use one table per class approach. Try to stay away from one table per
concrete class approach because it makes refactoring difficult by copying data back and forth between tables.
No approach is ideal for all situations.

Another option for mapping inheritance into relational database is to take a generic meta-data driven approach.
This approach supports all forms of mapping. In this approach, value of a single attribute will be stored as a row
in a table called “Value”. So, to store 5 attributes you need 5 rows in “Value” table. You will have a table called
“Class” where class names are stored, a table called “Inheritance” where subclass and superclass information is
stored, a table called “Attributes” where class attributes are stored and an “AttributeType” lookup table.

Q 102: What is a view? Why will you use a view? What is an aggregate function? Etc. SF PI
A 102:

Question Explanation
What is view? Why use a view? View is a precompiled SQL query, which is used to select data from one or more tables.

A view is like a table but it doesn’t physically take any space (ie not materialised). Views
are used for

 Providing inherent security by exposing only the data that is needed to be shown to

the end user.
 Enabling re-use of SQL statements.
 Allows changes to the underlying tables to be hidden from clients, aiding

maintenance of the database schema (i.e. encapsulation).

Views with multiple joins and filters can dramatically degrade performance because
views contain no data and any retrieval needs to be processed. The solution for this is to
use materialised views or create de-normalised tables to store data. This technique is
quite handy in overnight batch processes where a large chunk of data needs to be
processed. Normalised data can be read and inserted into some temporary de-
normalised table and processed with efficiency.

Explain aggregate SQL functions? SQL provides aggregate functions to assist with the summarisation of large volumes of
data.

We’ll look at functions that allow us to add and average data, count records meeting
specific criteria and find the largest and smallest values in a table.

ORDERID FIRSTNAME SURNAME QTY UNITPRICE
1001 John Darcy 25 10.5
1002 Peter Smith 25 10.5
1003 Sam Gregory 25 10.5

SELECT SUM(QTY) AS Total FROM Orders;

The output is: Total = 75

SELECT AVG(UnitPrice * QTY) As AveragePrice FROM Orders;

The output is: AveragePrice = 262.50

If we inserted another row to the above table:

ORDERID FIRSTNAME SURNAME QTY UNITPRICE
1004 John Darcy 20 10.50

SELECT FIRSTNAME,SUM(QTY) FROM orders
 GROUP BY FIRSTNAME
 HAVING SUM(QTY)>25;

The output is: John 45

Explain INSERT, UPDATE, and
DELETE statements?

INSERT statements can be carried out several ways:

INSERT INTO ORDERS values (1004, 'John', 'Darcy', 20, 10.50);

Enterprise Java

125

The above statement is fine but the one below is recommended since it is less
ambiguous and less prone to errors.

INSERT INTO ORDERS (orderid, firstname, surname, qty, unitprice)
 values (1005, 'John', 'Darcy', 20, 10.50);

We can also use INSERT with the SELECT statements as shown below

INSERT into NEW_ORDERS (orderid, firstname, surname, qty, unitprice)
 SELECT orderid, firstname, surname, qty, unitprice
 FROM orders WHERE orderid = 1004;

UPDATE statement allows you to update a single or multiple statements.

UPDATE ORDERS set firstname='Peter', surname='Piper'
 WHERE orderid=1004;

Also can have more complex updates like

UPDATE supplier
SET supplier_name = (SELECT customer.name
 FROM customers
 WHERE customers.customer_id = supplier.supplier_id)
WHERE EXISTS
 (SELECT customer.name
 FROM customers
 WHERE customers.customer_id = supplier.supplier_id);

DELETE statements allow you to remove records from the database.

DELETE FROM ORDERS WHERE orderid=1004;

We can clear the entire table using

TRUNCATE TABLE employees;

When running UPDATE/DELETE care should be taken to include WHERE clause
otherwise you can inadvertently modify or delete records which you do not intend to
UPDATE/DELETE.

How can you compare a part of
the name rather than the entire
name?

You can use wild card characters like:

• * (% in oracle) Match any number of characters.
• ? (_ in oracle) Match a single character.

To find all the employees who has “au”:
SELECT * FROM employees emp
 WHERE emp.firstname LIKE ‘%au%’;

How do you get distinct entries
from a table?

The SELECT statement in conjunction with DISTINCT lets you select a set of distinct
values from a table in a database.

SELECT DISTINCT empname FROM emptable

How can you find the total number
of records in a table?

Use the COUNT key word:

SELECT COUNT(*) FROM emp WHERE age>25

What's the difference between a
primary key and a unique key?

Both primary key and unique key enforce uniqueness of the column on which they are
defined. But by default primary key creates a clustered index on the column, whereas
unique creates a non-clustered index by default. Another major difference is that,
primary key doesn't allow NULLs, but unique key allows one NULL only.

What are constraints? Explain
different types of constraints.

Constraints enable the RDBMS enforce the integrity of the database automatically,
without needing you to create triggers, rule or defaults.

Types of constraints: NOT NULL, CHECK, UNIQUE, PRIMARY KEY, FOREIGN KEY

What is an index? What are the
types of indexes? How many
clustered indexes can be created
on a table? What are the

The books you read have indexes, which help you to go to a specific key word faster.
The database indexes are similar.

Indexes are of two types. Clustered indexes and non-clustered indexes. When you

Enterprise Java

126

advantages and disadvantages of
creating separate index on each
column of a table?

create a clustered index on a table, all the rows in the table are stored in the order of the
clustered index key. So, there can be only one clustered index per table. Non-clustered
indexes have their own storage separate from the table data storage. The row located
could be the RowID or the clustered index key, depending up on the absence or
presence of clustered index on the table.

If you create an index on each column of a table, it improves the query performance, as
the query optimizer can choose from all the existing indexes to come up with an efficient
execution plan. At the same time, data modification operations (such as INSERT,
UPDATE, and DELETE) will become slow, as every time data changes in the table, all
the indexes need to be updated. Another disadvantage is that, indexes need disk space,
the more indexes you have, more disk space is used.

Enterprise - RUP & UML

Q 103: What is RUP? SD
A 103: Rational Unified Process (RUP) is a general framework that can be used to describe a development process.

The software development cycle has got 4 phases in the following order Inception, Elaboration, Construction,
and Transition.

R a tio n a l U n if ie d P ro c e s s

P H A S E S

In c e p tio n e la b o ra t io n c o n s tru c tio n tra n s it io n

IT E R A T IO N S

In c e p tio n # 1 E la b # 1 E la b # 2 C o n
1

C o n
2

C o n
3

T ra n s it io n # 1

B u s in e s s M o d e llin g

R e q u ire m e n ts
A n a lys is & D e s ig n

Im p le m e n ta t io n T e s t

D e p lo ym e n t

C o n f ig & C h a n g e m g m t
P ro je c t m g m t

E n v iro n m e n t

D
is

ci
pl

in
es

 (
ve

rt
ic

al
 a

xi
s)

P H A S E S / IT E R A T IO N S (H o r iz o n ta l a x is)

The core of the phases is state-based, and the state is determined by what fundamental questions you are trying
to answer:

 Inception - do you and the customer have a shared understanding of the system?
 Elaboration - do you have baseline architecture to be able to build the system?
 Construction - are you developing a product?
 Transition - are you trying to get the customer to take ownership of the system?

RUP is based on a few important philosophies and principles:

 A software project team should plan ahead.
 It should know where it is going.
 It should capture project knowledge in a storable and extensible form.

The best practices of RUP involve the following major 5 properties:

Best practice property Description
Use case driven Interaction between the users and the system.

Architecture centric Based on architecture with clear relationships between architectural components.
Iterative The problem and the solution are divided into more manageable smaller pieces, where each

Enterprise Java

127

iteration will be addressing one of those pieces.

Incremental Each iteration builds incrementally on the foundation built in the previous iteration.

Controlled Control with respect to process means you always know what to do next; control with respect to
management means that all deliverables, artifacts, and code are under configuration
management.

Q 104: Explain the 4 phases of RUP? SD
A 104:

RUP Phases

INCEPTION ELABORATION TRANSITION
Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6

Construction

 Inception: During the inception phase, you work out the business case for the project. You also will be

making a rough cost estimate and return on investment. You should also outline the scope and size of the
project.

The fundamental question you ask at the end of this phase: do you and the customer have a shared
understanding of the system?

 Elaboration: At this stage you have the go ahead of the project however only have vague requirements. So

at this stage you need to get a better understanding of the problem. Some of the steps involved are:

 What is it you are actually going to build?
 How are you going to build it?
 What technology are you going to use?
 Analysing and dealing with requirement risks, technological risks, skill risks, political risks etc.
 Develop a domain model, use case model and a design model. The UML techniques can be used for

the model diagrams (e.g. class diagrams, sequence diagrams etc).

An important result of the elaboration phase is that you have a baseline architecture. This architecture
consists of:

 A list of use cases depicting the requirements.
 The domain model, which captures your understanding of the domain with the help of UML class

diagrams.
 Selection of key implementation technology and how they fit together. For example: Java/J2EE with

JSP, Struts, EJB, XML, etc.

The fundamental question you ask at the end of this phase: do you have a baseline architecture to be
able to build the system?

 Construction: In this phase you will be building the system in a series of iterations. Each iteration is a mini
project. You will be performing analysis, design, unit testing, coding, system testing, and integration testing for
the use cases assigned to each iteration. The iterations within the construction phase are incremental and
iterative. Each iteration builds on the use cases developed in the previous iterations. The each iteration will
involve code rewrite, refactoring, use of design patterns etc.

The basic documentation required during the construction phase is:

 A class diagram and a sequence diagram.
 Some text to pull the diagrams together.

Enterprise Java

128

 If a class has complex life cycle behaviour then a state diagram is required.
 If a class has a complex computation then an activity diagram is required.

The fundamental question you ask at the end of this phase: do you have a developed product?

 Transition: During this phase you will be delivering the finished code regularly. During this phase there is no
coding to add functionality unless it is small and essential. There will be bug fixes, code optimisation etc
during this phase. An example of a transition phase is that the time between the beta release and the final
release of a product.

The fundamental question you ask at the end of this phase: are you trying to get the customer to take
ownership of the developed product or system?

Q 105: What are the characteristics of RUP? Where can you use RUP? SD
A 105:

1. RUP is based on a few important philosophies and principles like planning ahead, knowing where the process
is heading and capturing the project in storable and extensible manner.

2. It is largely based on OO analysis and design, and use case driven etc.
3. Iterative and incremental development as oppose to waterfall approach, which hides problems.
4. Architecture centric approach.

RUP is more suited for larger teams of 50-100 people. RUP can also be used as an agile (i.e. lightweight)
process for smaller teams of 20-30 people, or as a heavy weight process for larger teams of 50-100 people.
Extreme Programming (XP) can be considered as a subset of RUP. At the time of writing, the agile (i.e
lightweight) software development process is gaining popularity and momentum across organizations.
Several methodologies fit under this agile development methodology banner. All these methodologies share
many characteristics like iterative and incremental development, test driven development, stand up
meetings to improve communication, automatic testing, build and continuous integration of code etc.
Refer Q136 in Enterprise Java section.

Q 106: Why is UML important? SD DC
A 106: The more complicated the underlying system, the more critical the communication among everyone involved in

developing and deploying the software. UML is a software blueprint language for analysts, designers and
developers. UML provides a common vocabulary for the business analysts, architects, developers etc.

UML is applicable to the Object Oriented problem solving. UML begins with a model; A model is an abstraction
of the underlying problem. The domain is the actual world from which the problem comes. The model consists of
objects. The objects interact with each other by sending and receiving messages. The objects are
characterised by attributes and operations (behaviours). The values of an object’s attributes determine its
state. The classes are the blueprints (or like templates) for objects. A class wraps attributes and methods into
a single distinct entity. The objects are the instances of classes.

Q 107: What are the different types of UML diagrams? SD DC
A 107: Use case diagrams: Depicts the typical interaction between external users (actors) and the system. The

emphasis is on what a system does rather than how it does it. A use case is a summary of scenarios for a
single task or goal. An actor is responsible for initiating a task. The connection between actor and use case is a
communication association.

Capturing use cases is one of the primary tasks of the elaboration phase of RUP. In its simplest usage, you
capture a use case by talking to your users and discussing the various things they might want to do with the
system.

When to use ‘use case’ diagrams?

 Determining user requirements. New use cases often generate new requirements.
 Communicating with clients. The simplicity of the diagram makes use case diagrams a good way for

designers and developers to communicate with clients.
 Generating test cases. Each scenario for the use case may suggest a suite of test cases.

Enterprise Java

129

U s e c a s e d i a g r a m

p e r f o r m s e c u r i t y
c h e c k

I n t e r n a t i o n a l S t u d e n t

R e g i s t r a r

S t u d e n t

E n r o l l i n U n i v e r s i
t y E n r o l l i n s e m i n a r

E n r o l l f a m i l y
m e m b e r s

* *

a s s o c i a t i o n

a s s o c i a t i o n

a s s o c i a t i o n

i n h e r i t a n c e

< < i n c l u d e > >

i n h e r i t a n c e

< < e x t e n d > >

N o t e :
< < e x t e n d > > r e l a t i o n s h i p i s c o n d i t i o n a l . Y o u d o
n o t k n o w i f o r w h e n e x t e n d i n g u s e c a s e w i l l b e
i n v o k e d .
< < i n c l u d e > > r e l a t i o n s h i p i s s i m i l a r t o a
p r o c e d u r e c a l l .
i n h e r i t a n c e : e x t e n d s t h e b e h a v i o r o f t h e
p a r e n t u s e c a s e o r a c t o r .

Class diagrams: Class diagram technique is vital within Object Oriented methods. Class diagrams describe the
types of objects in the system and the various static relationships among them. Class diagrams also show the
attributes and the methods. Class diagrams have the following possible relationships:

 Association: A relationship between instances of 2 classes.

 Aggregation: An association in which one class belongs to a collection (does not always have to be a

collection. You can also have cardinality of “1”). This is a part of a whole relationship where the part can
exist without the whole. For example: A line item is whole and the products are the parts. If a line item is
deleted then the products need not be deleted.

 Composition: An association in which one class belongs to a collection (does not always have to be a

collection. You can also have cardinality of “1”). This is a part of a whole relationship where the part cannot
exist without the whole. If the whole is deleted then the parts are deleted. For example: An Order is a whole
and the line items are the parts. If an order is deleted then all the line items should be deleted as well (ie
cascade deletes).

 Generalization: An inheritance link indicating that one class is a superclass of the other. The Generalization

expresses the “is a” relationship whereas the association, aggregation and composition express the “has a”
relationship.

 Dependency: A dependency is a weak relationship where one class requires another class. The dependency

expresses the “uses” relationship. For example: A domain model class uses a utility class like Formatter etc.

C lass D iagram

+operation1()
-lineItem s : L is t

O rder
-order : O rder

Custom er

1 *
-LineId
-product : P roduct
-com m ents

O rderDetail

1 1..*

StandardO rder
-spec ia lD eta ils
Custom O rder

+form atD ecim al()
+ form atC urrency()

«utility»
Form atter

-productCode
-productDesc
-un itP rice

P roduct

1

*

association
com position dependency

aggregation
generalization

When to use class diagrams?

 Class diagrams are the backbone of Object Oriented methods. So they are used frequently.

Enterprise Java

130

 Class diagrams can have a conceptual perspective and an implementation perspective. During the analysis
draw the conceptual model and during implementation draw the implementation model.

Package diagrams: To simplify complex class diagrams you can group classes into packages.

P a c k a g e D i a g r a m

A c c o u n t i n g O r d e r i n g

C u s t o m e r

d e p e n d e n c y

d e p e n d e n c y

When to use package diagrams?

 Package diagrams are vital for large projects.

Object diagrams: Object diagrams show instances instead of classes. They are useful for explaining some
complicated objects in detail about their recursive relationships etc.

O b je c t D ia g r a m

D e p a r tm e n t

1

0 .. *

R e c u rs iv e c la s s
d ia g ra m d if f ic u lt to fu lly
u n d e rs ta n d

p h y s ic s M a th s : D e p a r tm e n t

p h y s ic s : D e p a r tm e n t m a th : D e p a r tm e n t

p u r e M a th : D e p a r tm e n t a p p l ie d M a th : D e p a r tm e n t

O b je c t D ia g r a m

C la s s D ia g r a m

im p r o v e c la r ity

S h o w s th e d e ta i ls o f th e re c u rs iv e o b je c t re la t io n s h ip

C la s s n a m e

o b je c t n a m e

When to use object diagrams?

 Object diagrams are a vital for large projects.
 They are useful for explaining structural relationships in detail for complex objects.

Sequence diagrams: Sequence diagrams are interaction diagrams which detail what messages are sent and
when. The sequence diagrams are organized according to time. The time progresses as you move from top to
bottom of the diagram. The objects involved in the diagram are shown from left to right according to when they
take part.

a n O r d e r : O r d e r a n E n t r y : O r d e r E n t r y

m a k e A n O r d e r () m a k e A n O r d e r ()

i t e r a t io n [f o r e a c h . . .] ()

c o n f i r m : C o n f i r m a t io n
h a s S u f f ic ie n tD e ta i ls ()

p r in tC o n f i r m a t io n ()

c h e c k i f s u f f ic ie n t d e ta i ls
a r e a v a i la b le

fo r e a c h l in e I te m

c l ie n t

S e q u e n c e D ia g r a m

N o te : E a c h v e r t ic a l d o t t e d l in e is a l i f e l in e . E a c h a r r o w is a m e s s a g e . T h e r e c ta n g u la r b o x e s o n t h e l i f e
l in e a r e c a l le d t h e a c t iv a t io n b a r w h ic h r e p r e s e n ts t h e d u r a t io n o f e x e c u t io n o f m e s s a g e .

Enterprise Java

131

Collaboration diagrams: Collaboration diagrams are also interaction diagrams. Collaboration diagrams convey
the same message as the sequence diagrams. But the collaboration diagrams focus on the object roles instead
of the times at which the messages are sent.

The collaboration diagrams use the decimal sequence numbers as shown in the diagram below to make it clear
which operation is calling which other operation, although it can be harder to see the overall sequence. The top-
level message is numbered 1. The messages at the same level have the same decimal prefix but different suffixes
of 1, 2 etc according to when they occur.

Collaboration Diagram

client

anOrder : Order

1.
1

: m
ak

eA
nO

rd
er

()

anEntry : OrderEntry

1

*

confirm : Confirmation

1.1.1: makeAnOrder() 1.1.1.2 : hasSufficientDetails()

1.1.1.1: for each (iteration)

object

message sequence
number

self-link

When to use interaction diagrams?

 When you want to look at behaviour of several objects within a single use case. If you want to look at a single

object across multiple use cases then use statechart diagram as described below.

State chart diagrams: Objects have behaviour and state. The state of an object is depends on its current activity
or condition. This diagram shows the possible states of the object and the transitions that cause a change in its
state.

C h e c k in g s ta te D is p a tc h in g s ta te

w a it in g s ta te D e liv e re d s ta te

/ g e t a n ite m

/ s o m e ite m s n o t in s to c k

/ a ll i te m s a v a ila b le

/ i te m s re c e iv e d

/ d e liv e r

S ta te c h a r t D ia g r a m

When to use statechart diagram?

 Statechart diagrams are good at describing the behaviour of an object across several use cases. But they are

not good at describing the interaction or collaboration between many objects. Use interaction and/or activity
diagrams in conjunction with a statechart diagram.

 Use it only for classes that have complex state changes and behaviour. For example: the User Interface (UI)

control objects, Objects shared by multi-threaded programs etc.

Enterprise Java

132

Activity diagram: This is really a fancy flow chart. The activity diagram and statechart diagrams are related in a
sense that statechart diagram focuses on object undergoing a transition process and an activity diagram focuses
on the flow of activities involved in a single transition process.

Activity Diagram

get first itemcheck next item

W ait for items to arrive in stock

dispatch all items

/ som e item s not in stock

/ All item s in stock

place an order with the supplier receive the order and enter into stock

Order placement department dispatch department
swim lane

start

activity

join

In domain modelling it is imperative that the diagram conveys which object (or class) is responsible for each
activity. Activity diagrams can be divided into object swimlanes that determine which object is responsible for
which activity. The swimlanes are quite useful because they combine the activity diagram’s depiction of logic with
the interaction diagram’s depiction of responsibility. A single transition comes out of each activity, connecting to
the next activity. A transition may join or fork.

When to use activity diagrams?

The activity and statechart diagrams are generally useful to express complex operations. The great strength of
activity diagrams is that they support and encourage parallel behaviour. The activity and statechart diagrams are
beneficial for workflow modelling with multi-threaded programming.

Component and Deployment diagrams: A component is a code module. Component diagrams are physical
diagrams analogous to a class diagram. The deployment diagrams show the physical configuration of software
and hardware components. The physical hardware is made up of nodes. Each component belongs to a node.

Component and Deployment Diagram

Wholesaler J2EE application serverRatailer J2EE Server

Order Component Dispatch Component

DispathIFOrderIF

Order Component

OrderIF

Enterprise Java

133

Q 108: What is the difference between aggregation and composition? SD DC
A 108:

Aggregation Composition
Aggregation: An association in which one class
belongs to another class or a collection. This is a part
of a whole relationship where the part can exist
without the whole. For example: A line item is whole
and the products are the parts. If a line item is deleted
then the products need not be deleted. (no cascade
delete in database terms)

Composition: An association in which one class belongs to
another class a collection. This is a part of a whole relationship
where the part cannot exist without the whole. If the whole is
deleted then the parts are deleted. For example: An Order is a
whole and the line items are the parts. If an order is deleted then all
the line items should be deleted as well (i.e. cascade deletes in
database terms).

Aggregations are not allowed to be circular. In a garbage-collected language like Java, The whole has the
responsibility of preventing the garbage collector to prematurely
collect the part by holding reference to it.

Q 109: What is the difference between a collaboration diagram and a sequence diagram? SD DC
A 109: You can automatically generate one from the other.

Sequence Diagram Collaboration Diagram
The emphasis is on the sequence. The emphasis is on the object roles

Reference: The above section on RUP & UML is based on the book UML Distilled by Martin Fowler and Kendall Scott. If you
would like to have a good understanding of UML & RUP, then this book is recommended.

Enterprise - Struts

Struts is a Web-based user interface framework, which has been around for a few years. It is a matured and proven framework, which
has been used in many J2EE projects. While Struts has been demonstrating its popularity, there is an emerging framework called
JavaServer Faces (JSF) gaining lots of momentum and popularity. Like Struts, JSF provides Web application life cycle management
through a controller servlet, and like Swing, JSF provides a rich component model complete with event handling and component
rendering. So JSF can be considered as a combination of Struts frame work and Java Swing user interface framework. Refer Q19 –
Q20 in Emerging Technologies/Frameworks section for JSF.

Q 110: Give an overview of Struts? SF DP
A 110: Struts is a framework with set of cooperating classes, servlets and JSP tags that make up a reusable MVC 2

design.

S T R U T S O v e r v ie w

C l ie n t
(B R O W S E R)

V ie w
(JS P)

A c ti o n
(c a l ls b u s in e s s lo g ic)

M o d e l
(F o r m b e a n s)

1. H
TTP re

ques t 2 . D i sp a tc h

3.
 I

ns
ta

nt
ia

te
/ S

et

5 . g e t th r o u g h Ta g

6. HTTP respo nse

4.
 F

op
rw

ar
d

F ro n t
C o n tro l l e r
(S e rvle t)

s t r u t s -
c o n f ig .x m l

 Client (Browser): A request from the client browser creates an HTTP request. The Web container will
respond to the request with an HTTP response, which gets displayed on the browser.

Enterprise Java

134

 Controller (ActionServlet class and Request Processor class): The controller receives the request from
the browser, and makes the decision where to send the request based on the struts-config.xml. Design
pattern: Struts controller uses the command design pattern by calling the Action classes based on the
configuration file struts-config.xml and the RequestProcessor class’s process() method uses template
method design pattern (Refer Q11 in How would you go about … section) by calling a sequence of methods
like:

• processPath(request, response) read the request URI to determine path element.

• processMapping(request,response) use the path information to get the action mapping

• processRoles(request,respose,mapping) Struts Web application security which provides an

authorization scheme. By default calls request.isUserInRole(). For example allow /addCustomer action if
the role is executive.

<action path=”/addCustomer” roles=”executive”>

• processValidate(request,response,form,mapping) calls the vaildate() method of the ActionForm.

• processActionCreate(request,response,mapping) gets the name of the action class from the “type”

attribute of the <action> element.

• processActionPerform(req,res,action,form,mapping) This method calls the execute method of the
Action class which is where business logic is written.

 Business Logic (Action class): The Servlet dispatches the request to Action classes, which act as a thin

wrapper to the business logic (The actual business logic is carried out by either EJB session beans and/or
plain Java classes). The action class helps control the workflow of the application. (Note: The Action class
should only control the workflow and not the business logic of the application). The Action class uses the
Adapter design pattern (Refer Q11 in How would you go about … section).

 ActionForm class: Java representation of HTTP input data. They can carry data over from one request to
another, but actually represent the data submitted with the request.

 View (JSP): The view is a JSP file. There is no business or flow logic and no state information. The JSP

should just have tags to represent the data on the browser.

ActionServlet class is the controller part of the MVC implementation and is the core of the framework. It
processes user requests, determines what the user is trying to achieve according to the request, pulls data from
the model (if necessary) to be given to the appropriate view, and selects the proper view to respond to the user.
As discussed above ActionServlet class delegates the grunt of the work to the RequestProcessor and Action
classes.

The ActionForm class maintains the state for the Web application. ActionForm is an abstract class, which is
subclassed for every input form model. The struts-config.xml file controls, which HTML form request maps to
which ActionForm.

The Action class is a wrapper around the business logic. The purpose of the Action class is to translate the
HttpServletRequest to the business logic. To use the Action class, subclass and overwrite the execute() method.
The actual business logic should be in a separate package or EJB to allow reuse of business logic in protocol
independent manner (ie the business logic should be used not only by HTTP clients but also by WAP clients,
EJB clients, Applet clients etc).

The ExceptionHandler can be defined to execute when the Action class’s execute() method throws an Exception.
For example

<global-exceptions>
 <exception key="my.key" type="java.io.IOException" handler="my.ExceptionHandler"/>
</global-exceptions>

When an IOException is thrown then it will be handled by the execute() method of the my.ExceptionHandler class.

The struts-config.xml configuration information is translated into ActionMapping, which are put into the
ActionMappings collection.
Further reading is recommended for more detailed understanding.

Enterprise Java

135

Q 111: What is a synchronizer token pattern in Struts or how will you protect your Web against multiple submissions?

DC DP
A 111: Web designers often face the situation where a form submission must be protected against duplicate or multiple

submissions. This situation typically occurs when the user clicks on submit button more than once before the
response is sent back or client access a page by returning to the previously book marked page.

 The simplest solution that some sites use is that displaying a warning message “Wait for a response after

submitting and do not submit twice.

 In the client only strategy, a flag is set on the first submission and from then onwards the submit button is
disabled based on this flag. Useful in some situations but this strategy is coupled to the browser type and
version etc.

 For a server-based solution the J2EE pattern synchroniser token pattern can be applied. The basic

idea is to:

1. Set a token in a session variable on the server side before sending the transactional page back to
the client.

2. The token is set on the page as a hidden field. On submission of the page first check for the

presence of a valid token by comparing the request parameter in the hidden field to the token stored
in the session. If the token is valid continue processing otherwise take other alternative action. After
testing the token must be reset to null.

The synchroniser token pattern is implemented in Struts. How do we implement the alternate course of action
when the second clicks on submit button will cancel the response from the first click. The thread for the first click
still runs but has no means of sending the response back to the browser. This means the transaction might have
gone through without notifying the user. The user might get the impression that transaction has not gone
through.

Struts support for synchronisation comes in the form of:

ActionServlet.saveToken(HttpRequest) and ActionServlet.isTokenValid(HttpRequest) etc

Q 112: How do you upload a file in Struts? SF
A 112: In JSP page set the code as shown below: CO

<html:form action="upload.do" enctype="multipart/form-data" name="fileForm" type="FileForm"
 scope="session">
Please select the file that you would like to upload:
<html:file property="file" />
<html:submit />
</html:form>

In the FormBean set the code as shown below:

public class FileForm extends ActionForm {
 private FormFile file;

 public void setFile(FormFile file){
 this.file = file;
 }

 public FormFile getFile(){
 return file;
 }
}

Q 113: Are Struts action classes thread-safe? SF CI
A 113: No. Struts action classes are not thread-safe. Struts action classes are cached and reused for performance

optimization at the cost of having to implement the action classes in a thread-safe manner.

Enterprise Java

136

Q 114: How do you implement internationalization in Struts? SF
A 114: Internationalization is built into Struts framework. In the JSP page set the code as shown below: CO

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

<html:html locale="true">
<head>
 <title>i18n</title>
</head>

<body>
 <h2><bean:message key="page.title"/></h2>
</body>
</html:html>

Now we need to create an application resource file named ApplicationResource.properties.

page.title=Thank you for visiting!

Now in Italian, create an application resource file named ApplicationResource_it.properties.

page.title=Grazie per la vostra visita!

Finally, add reference to the appropriate resource file in the struts-config.xml.

Q 115: What is an action mapping in Struts? How will you extend Struts? SF
A 115: An action mapping is a configuration file (struts-config.xml) entry that, in general, associates an action name

with an action. An action mapping can contain a reference to a form bean that the action can use, and can
additionally define a list of local forwards that is visible only to this action.

How will you extend Struts?

Struts is not only a powerful framework but also very extensible. You can extend Struts in one or more of the
following ways:

PlugIn: Define your own PlugIn class if you want to execute some init() and destroy() methods during the
application startup and shutdown respectively. Some services like loading configuration files, initialising
applications like logging, auditing, etc can be carried out in the init() method.

RequestProcessor: You can create your own RequestProcessor by extending the Struts RequestProcessor.
For example you can override the processRoles(req, res, mapping) in your extended class if you want to query
the LDAP server for the security authorization etc.

ActionServlet: You can extend the ActionServlet class if you want to execute your business logic at the
application startup or shutdown or during individual request processing. You should take this approach only
when the above mentioned approaches are not feasible.

Q 116: What design patterns are used in Struts? DP
A 116: Struts is based on model 2 MVC (Model-View-Controller) architecture. Struts controller uses the command

design pattern (Refer Q11 in How would you go about section) and the action classes use the adapter design
pattern. The process() method of the RequestProcessor uses the template method design pattern (Refer Q11
in How would you go about section). Struts also implement the following J2EE design patterns

 Service to Worker (Refer Q25 in Enterprise section).
 Dispatcher View (Refer Q25 in Enterprise section).
 Composite View (Struts Tiles) (Refer Q25 in Enterprise section)
 Front Controller (Refer Q24 in Enterprise section).
 View Helper (Refer Q25 in Enterprise section).
 Synchronizer Token (Refer Q111 in Enterprise section).

Enterprise Java

137

Enterprise - Web and Application servers

Q 117: What application servers, Web servers, LDAP servers, and Database servers have you used?
A 117:

Web Servers Apache, Microsoft IIS, Netscape, Domino etc

Application Servers IBM Websphere, BEA Weblogic, Apache Tomcat, Borland Enterprise Server, Fujitsu
Interstage, JBoss, ATG Dynamo etc

LDAP Servers IPlanet’s directory server, SiemensDirX etc

Database Servers IBM DB2, Oracle, SQL Server, Sybase, Informix

Q 118: What is the difference between a Web server and an application server? SF
A 118: In general, an application server prepares data for a Web server -- for example, gathering data from databases,

applying relevant business rules, processing security checks, and/or storing the state of a user’s session. The
term application server may be misleading since the functionality isn’t limited to applications. Its role is more as
retriever and manager of data and processes used by anything running on a Web server. In the coming age of
Web services, application servers will probably have an even more important role in managing service oriented
components. One of the reasons for using an application server is to improve performance by off-loading tasks
from a Web server. When heavy traffic has more users, more transactions, more data, and more security checks
then more likely a Web server becomes a bottleneck.

Web Server Application Server
Supports HTTP protocol. When a Web server receives an
HTTP request, it responds with an HTTP response, such
as sending back an HTML page (static content) or
delegates the dynamic response generation to some other
program such as CGI scripts or Servlets or JSPs in an
application server.

Exposes business logic and dynamic content to a client
through various protocols such as HTTP, TCP/IP, IIOP, JRMP
etc.

Uses various scalability and fault-tolerance techniques. Uses various scalability and fault-tolerance techniques. In
addition provides resource pooling, component life cycle
management, transaction management, messaging, security
etc.

Q 119: What is a virtual host? SF
A 119: The term virtual host refers to the practice of maintaining more than one server on one machine. They are

differentiated by their host names. You can have name based virtual hosts and IP address based virtual hosts.
For example

A name-based "virtual host" has a unique domain name, but the same IP address. For example,
www.company1.com and www.company2.com can have the same IP address 192.168.0.10 and share the same
Web server. We can configure the Web server as follows:

NameVirtualHost 192.168.0.10

<VirtualHost 192.168.0.10>
 ServerName www.company1.com
 DocumentRoot /web/company1
</VirtualHost>

<VirtualHost 192.168.0.10>
 ServerName www.company2.com
 DocumentRoot /web/company2
</VirtualHost>

In this scenario, both www.company1.com and www.company2.com are registered with the standard domain
name service (DNS) registry as having the IP address 192.168.0.10. A user types in the URL
http://www.company1.com/hello.jsp in their browser. The user's computer resolves the name

Enterprise Java

138

www.company1.com to the IP address 192.168.0.10. The Web server on the machine that has the IP address
192.168.0.10, so it receives the request. The Web server determines which virtual host to use by matching the
request URL It gets from an HTTP header submitted by the browser with the “ServerName” parameter in the
configuration file shown above.

Name-based virtual hosting is usually easier, since you have to only configure your DNS server to map each
hostname to a single IP address and then configure the Web server to recognize the different hostnames as
discussed in the previous paragraph. Name-based virtual hosting also eases the demand for scarce IP
addresses limited by physical network connections [but modern operation systems supports use of virtual
interfaces, which are also known as IP aliases]. Therefore you should use name-based virtual hosting unless
there is a specific reason to choose IP-based virtual hosting. Some reasons why you might consider using IP-
based virtual hosting:

 Name-based virtual hosting cannot be used with SSL based secure servers because of the nature of the

SSL protocol.

 Some operating systems and network equipment implement bandwidth management techniques that cannot
differentiate between hosts unless they are on separate IP addresses.

 IP based virtual hosts are useful, when you want to manage more than one site (like live, demo, staging etc)
on the same server where hosts inherit the characteristics defined by your main host. But when using SSL
for example, a unique IP address is necessary.

For example in development environment when using the test client and the server on the same machine we can
define the host file as shown below:

UNIX user: /etc/hosts
Windows user: C:\WINDOWS\SYSTEM32\DRIVERS\ETC\HOSTS

127.0.0.1 localhost
127.0.0.1 www.company1.com
127.0.0.1 www.company2.com

[Reference: http://httpd.apache.org/docs/1.3/vhosts/]

Q 120: What is application server clustering? SI
A 120: An application server cluster consists of a number of application servers loosely coupled on a network. The

server cluster or server group is generally distributed over a number of machines or nodes. The important point
to note is that the cluster appears as a single server to its clients.

The goals of application server clustering are:

 Scalability: should be able to add new servers on the existing node or add new additional nodes to
enable the server to handle increasing loads without performance degradation, and in a manner
transparent to the end users.

 Load balancing: Each server in the cluster should process a fair share of client load, in proportion to its

processing power, to avoid overloading of some and under utilization of other server resources. Load
distribution should remain balanced even as load changes with time.

 High availability: Clients should be able to access the server at almost all times. Server usage should be

transparent to hardware and software failures. If a server or node fails, its workload should be moved
over to other servers, automatically as fast as possible and the application should continue to run
uninterrupted. This method provides a fair degree of application system fault-tolerance. After failure, the
entire load should be redistributed equally among working servers of the system.

[Good read: Uncover the hood of J2EE clustering by Wang Yu on http://www.theserverside.com]

Q 121: Explain Java Management Extensions (JMX)? SF
A 121: JMX framework can improve the manageability of your application by

Enterprise Java

139

 Monitoring your application for performance problems, critical events, error condition statistics, etc. For
example you can be notified if there is a sudden increase in traffic or sudden drop in performance of your
website.

 Making your application more controllable and configurable at runtime by directly exposing application API
and parameters. For example you could switch your database connection to an alternate server. You can
also change the level of debugging and logging within the application without stopping the server.

 By interfacing JMX to your hardware, database server and application server, health checks can be
performed of your infrastructure.

Q 122: Explain some of the portability issues between different application servers? SI
A 122: Transaction isolation levels, lazy loading and dirty marker strategies for EJB, class loading visibility etc.

Enterprise - Best practices and performance considerations

Q 123: Give some tips on J2EE application server performance tuning? PI
A 123:

 Set the Web container threads, which will be used to process incoming HTTP requests. The minimum
size should be tuned to handle the average load of the container and maximum should be tuned to
handle the peak load. The maximum size should be less than or equal to the number of threads in your
Web server.

 When an EJB is called from a servlet or another EJB within the same JVM (i.e. same application server)

then performance can be improved by running EJBs in pass-by-reference mode as oppose to pass-by-
value which is the default mode. Care should be taken to test the application properly before going into
production because some valid applications may not work correctly when pass-by-reference setting is
switched on.

 Application servers maintain a pool of JDBC resources so that a new connection does not need to be

created for each transaction. Application servers can also cache your prepared statements to improve
performance. So you can tune the minimum and maximum size of these pools.

 Tune your initial heap size for the JVM so that the garbage collector runs at a suitable interval so that it

does not cause any unnecessary overhead. Adjust the value as required to improve performance.

 Set the session manager settings appropriately based on following guidelines:

 Set the appropriate value for in memory session count.
 Reduce the session size.
 Don’t enable session persistence unless required by your application.
 Invalidate your sessions when you are finished with them by setting appropriate session timeout.

 Calls to EJB from a separate JVM are handled by ORB (Object Request Broker). ORB uses a pool of

threads to handle these requests. The thread pool size should be set appropriately to handle average and
peak loads.

 If a servlet or JSP file is called frequently with identical URL parameters then they can be dynamically

cached to improve performance.

 Turn the application server tracing off unless required for debugging.

 Some application servers support lazy loading and dirty marker strategies with EJB to improve
performance.

Q 124: Explain some of the J2EE best practices? BP
A 124:

Enterprise Java

140

 Recycle your valuable resources by either pooling or caching. You should create a limited number of
resources and share them from a common pool (e.g. pool of threads, pool of database connections, pool of
objects etc). Caching is simply another type of pooling where instead of pooling a connection or object, you
are pooling remote data (database data) and placing it in the memory (using Hashtable etc).

 Avoid embedding business logic in a protocol dependent manner like in JSPs, HttpServlets, Struts

action classes etc. This is because your business logic should be not only executed by your Web clients but
also required to be shared by various GUI clients like Swing based stand alone application, WAP clients etc.

 Automate the build process with tools like Ant, CruiseControl, and Maven etc. In an enterprise application
the build process can become quite complex and confusing.

 Build test cases first (i.e. Test Driven Development (TDD), refer section Emerging Technologies) using
tools like JUnit. Automate the testing process and integrate it with build process.

 Separate HTML code from the Java code: Combining HTML and Java code in the same source code can

make the code less readable. Mixing HTML and scriplet will make the code extremely difficult to read and
maintain. The display or behaviour logic can be implemented as a custom tags by the Java developers and
Web designers can use these Tags as the ordinary XHTML tags.

 It is best practice to use multi-threading and stay away from single threaded model of the servlet unless

otherwise there is a compelling reason for it. Shared resources can be synchronized or used in read-only
manner or shared values can be stored in a database table. Single threaded model can adversely affect
performance.

 Apply the following JSP best practices:

 Place data access logic in JavaBeans: The code within the JavaBean is readily accessible to other

JSPs and Servlets.

 Factor shared behaviour out of Custom Tags into common JavaBeans classes: The custom tags
are not used outside JSPs. To avoid duplication of behaviour or business logic, move the logic into
JavaBeans and get the custom tags to utilize the beans.

 Choose the right “include” mechanism: What are the differences between static and a dynamic
include? Using includes will improve code reuse and maintenance through modular design. Which one
to use? Refer Q31 in Enterprise section.

 Use style sheets (e.g. css), template mechanism (e.g. struts tiles etc) and appropriate comments
(both hidden and output comments).

 If you are using EJBs apply the EJB best practices as described in Q82 in Enterprise section.

 Use the J2EE standard packaging specification to improve portability across Application Servers.

 Use proven frameworks like Struts, Spring, Hibernate, JSF etc.

 Apply appropriate proven J2EE design patterns to improve performance and minimise network

communications cost (Session façade pattern, Value Object pattern etc).

 Batch database requests to improve performance. For example

Connection con = DriverManager.getConnection(……).
Statement stmt = con.createStatement().
stmt.addBatch(“INSERT INTO Address…………”);
stmt.addBatch(“INSERT INTO Contact…………”);
stmt.addBatch(“INSERT INTO Personal”);
int[] countUpdates = stmt.executeBatch();

Use “PreparedStatements” instead of ordinary “Statements” for repeated reads.

 Avoid resource leaks by

 Closing all database connections after you have used them.
 Clean up objects after you have finished with them especially when an object having a long life cycle

refers to a number of objects with short life cycles (you have the potential for memory leak).

Enterprise Java

141

 Poor exception handling where the connections do not get closed properly and clean up code that
never gets called. You should put clean up code in a finally {} block.

 Handle and propagate exceptions correctly. Decide between checked and unchecked (i.e RunTime

exceptions) exceptions.

Q 125: Explain some of the J2EE best practices to improve performance? BP PI
A 125: In short manage valuable resources wisely and recycle them where possible, minimise network overheads and

serialization cost, and optimise all your database operations.

 Manage and recycle your valuable resources by either pooling or caching. You should create a limited
number of resources and share them from a common pool (e.g. pool of threads, pool of database
connections, pool of objects etc). Caching is simply another type of pooling where instead of pooling a
connection or object, you are pooling remote data (database data), and placing it in memory (using
Hashtable etc). Unused stateful session beans must be removed explicitly and appropriate idle timeout
should be set to control stateful session bean life cycle.

 Use effective design patterns to minimise network overheads (Session facade, Value Object etc Refer

Q84, Q85 in Enterprise section), use of fast-lane reader pattern for database access (Refer Q86 in
Enterprise section). Caching of retrieved JNDI InitialContexts, factory objects (e.g. EJB homes) etc. using
the service locator design pattern, which reduces expensive JNDI access with the help of caching
strategies.

 Minimise serialization costs by marking references (like file handles, database connections etc), which do

not required serialization by declaring them ‘transient’ (Refer Q19 in Java section). Use pass-by-reference
where possible as opposed to pass by value.

 Set appropriate timeouts: for the HttpSession objects, after which the session expires, set idle timeout for

stateful session beans etc.

 Improve the performance of database operations with the following tips:

 Database connections should be released when not needed anymore, otherwise there will be potential
resource leakage problems.

 Apply least restrictive but valid transaction isolation level.

 Use JDBC prepared statements for overall database efficiency and for batching repetitive inserts and
updates. Also batch database requests to improve performance.

 When you first establish a connection with a database by default it is in auto-commit mode. For better
performance turn auto-commit off by calling the connection.setAutoCommit(false) method.

 Where appropriate (you are loading 100 objects into memory but use only 5 objects) lazy load your

data to avoid loading the whole database into memory using the virtual proxy pattern. Virtual proxy is
an object, which looks like an object but actually contain no fields until when one of its methods is
called does it load the correct object from the database.

 Where appropriate eager load your data to avoid frequently accessing the database every time over

the network.

Enterprise – Logging, testing and deployment

Q 126: Give an overview of log4J? SF
A 126: Log4j is a logging framework for Java. Log4J is designed to be fast and flexible. Log4J has 3 main components

which work together to enable developers to log messages:

 Loggers [was called Category prior to version 1.2]
 Appenders
 Layout

Enterprise Java

142

Logger: The foremost advantage of any logging API like log4J, apache commons logging etc over plain
System.out.println is its ability to disable certain log statements while allowing others to print unhindered.
Loggers are hierarchical. The root logger exists at the top of the hierarchy. The root logger always exists and it
cannot be retrieved by name. The hierarchical nature of the logger is denoted by “.” notation. For example the
logger “java.util” is the parent of child logger “java.util.Vector” and so on. Loggers may be assigned priorities
such as DEBUG, INFO, WARN, ERROR and FATAL. If a given logger is not assigned a priority, then it inherits
the priority from its closest ancestor. The logging requests are made by invoking one of the following printing
methods of the logger instance: debug(), info(), warn(), error(), fatal().

Appenders and Layouts: In addition to selectively enabling and disabling logging requests based on the logger,
the log4J allows logging requests to multiple destinations. In log4J terms the output destination is an appender.
There are appenders for console, files, remote sockets, JMS, etc. One logger can have more than one
appender. A logging request for a given logger will be forwarded to all the appenders in that logger plus the other
appenders higher in the hierarchy. In addition to the output destination the output format can be categorised as
well. This is accomplished by associating layout with an appender. The layout is responsible for formatting the
logging request according to user’s settings.

Sample configuration file:

#set the root logger priority to DEBUG and its appender to App1
log4j.rootLogger=DEBUG, App1

#App1 is set to a console appender
log4j.appender.App1=org.apache.log4j.ConsoleAppender

#appender App1 uses a pattern layout
log4j.appender.App1.layout=org.apache.log4j.PatternLayout.
log4j.appender.App1.layout.ConversionPattern=%-4r [%t] %-5p %c %x -%m%n

Print only messages of priority WARN or above in the package com.myapp
log4j.Logger.com.myapp=WARN

XML configuration for log4j is available, and is usually the best practise.

Q 127: How do you initialize and use Log4J? SF CO
A 127:

public class MyApp {
 //Logger is a utility wrapper class to be written with appropriate printing methods
 static Logger log = Logger.getLogger (MyApp.class.getName());

 public void my method() {
 if(log.isDebugEnabled())
 log.debug(“This line is reached………………………..” + var1 + “-” + var2);
)
 }

}

Q 128: What is the hidden cost of parameter construction when using Log4J? SF PI
A 128:

Do not use in frequently accessed methods or loops: CO

log.debug (“Line number” + intVal + “ is less than ” + String.valueOf(array[i]));

The above construction has a performance cost in frequently accessed methods and loops in constructing
the message parameter, concatenating the String etc regardless of whether the message will be logged or not.

Do use in frequently accessed methods or loops: CO

If (log.isDebugEnabled()) {
 log.debug (“Line number” + intVal + “ is less than ” + String.valueOf(array[i]));
}

Enterprise Java

143

The above construction will avoid the parameter construction cost by only constructing the message parameter
when you are in debug mode. But it is not a best practise to place log.isDebugEnabled() around all debug code.

Q 129: What is the test phases and cycles? SD
A 129:

 Unit tests (e.g. JUnit etc, carried out by developers).
There are two popular approaches to testing server-side classes: mock objects, which test classes by
simulating the server container, and in-container testing, which tests classes running in the actual server
container. If you are using Struts framework, StrutsTestCase for JUnit allows you to use either approach,
with very minimal impact on your actual unit test code.

 System tests or functional tests (carried out by business analysts and/or testers).
 Integration tests (carried out by business analysts, testers, developers etc).
 Regression tests (carried out by business analysts and testers).
 Stress volume tests or load tests (carried out by technical staff).
 User acceptance tests (UAT – carried out by end users).

Each of the above test phases will be carried out in cycles. Refer Q13 in How would you go about… section for
JUnit, which is an open source unit-testing framework.

Q 130: Brief on deployment environments you are familiar with?
A 130: Differ from project team to project team [Hint] :

Application environments where “ear” files get deployed.

Development box: can have the following instances of environments in the same machine (need not be
clustered).

 Development environment used by developers.
 System testing environment used by business analysts.

Staging box: can have the following instances of environments in the same machine (preferably clustered
servers with load balancing)

 Integration testing environment used for integration testing, user acceptance testing etc.
 Pre-prod environment used for user acceptance testing, regression testing, and load testing or stress

volume testing (SVT). [This environment should be exactly same as the production environment].

Production box:

 Production environment live site used by actual users.

Data environments (Database)

Note: Separate boxes [not the same boxes as where applications (i.e. ear files) are deployed]

 Development box (database).

Used by applications on development and system testing environments. Separate instances can be
created on the same box for separate environments like development and system testing.

 Staging Box (database)

Used by applications on integration testing and user acceptance testing environments. Separate
instances can be created on the same box for separate environments.

 Production Box (database)

Live data used by actual users of the system.

Enterprise Java

144

Enterprise - Personal

Q 131: Tell me about yourself or about some of the recent projects you have worked with? What do you consider your

most significant achievement? Why do you think you are qualified for this position? Why should we hire you and
what kind of contributions will you make?

A 131: [Hint:] Pick your recent projects and give a brief overview of it. Also it is imperative that during your briefing that
you demonstrate how you applied your skills and knowledge in some of the following key areas and fixed any
issues.

 Design Concepts: Refer Q02, Q03, Q19, Q20, Q21, Q91, Q98, and Q101.
 Design Patterns: Refer Q03, Q24, Q25, Q83, Q84, Q85, Q86, Q87, Q88 and Q111.
 Performance issues: Refer Q10, Q16, Q45, Q46, Q97, Q98, Q100, Q123, and Q125.
 Memory issues: Refer Q45 and Q93
 Multi-threading (Concurrency issues): Refer Q16, Q34, and Q113
 Exception Handling: Refer Q76 and Q77
 Transactional issues: Refer Q43, Q71, Q72, Q73, Q74, Q75 and Q77.
 Security issues: Refer Q23, Q58, and Q81
 Scalability issues: Refer Q20, Q21, Q120 and Q122.
 Best practices: Refer Q10, Q16, Q39, Q40, Q46, Q82, Q124, and Q125

Refer Q66 – Q72 in Java section for frequently asked non-technical questions.

Q 132: Have you used any load testing tools?
A 132: Rational Robot, JMeter, LoadRunner, etc.

Q 133: What source control systems have you used? SD
A 133: CVS, VSS (Visual Source Safe), Rational clear case etc. Refer Q13 in How would you go about section…. for

CVS.

Q 134: What operating systems are you comfortable with? SD
A 134: NT, Unix, Linux, Solaris etc

Q 135: Which on-line technical resources do you use to resolve any design and/or development issues?
A 135: http://www.theserverside.com, http://www.javaworld.com, http://www-136.ibm.com/developerworks/Java/,

http://java.sun.com/, www.javaperformancetuning.com etc

Enterprise – Software development process

Q 136: What software development processes/principles are you familiar with? SD
A 136: Agile (i.e. lightweight) software development process is gaining popularity and momentum across

organizations.

Agile software development manifesto [Good read: http://www.agilemanifesto.org/principles.html].

 Highest priority is to satisfy the customer.

 Welcome requirement changes even late in development life cycle.

 Business people and developers should work collaboratively.

 Form teams with motivated individuals who produce best designs and architectures.

Enterprise Java

145

 Teams should be pro-active on how to become more effective without becoming complacent.

 Quality working software is the primary measure of progress.

Why is iterative development with vertical slicing used in agile development? Your overall software quality
can be improved through iterative development, which provides you with constant feedback.

Traditional Vs Agile approach

project time

te
ch

ni
ca

l
sc

op
e

m
ile

st
on

e
1

m
ile

st
on

e
2

Data Layer

Business Layer

Data Layer

Business Layer

Data Layer m
ile

st
on

e
3

Presentation Layer

Traditional approach

With the tradional approach, Say for
example w e have a fundamental f law in
the data layer, if this f law gets only picked
up after the milestone 3, then there w ill be
lot of rew ork to be done to the business
and the presentation layer. This is the
major draw back w ith the traditional
development approach w here there is no
vertical slicing.

Agile (light w eight)approach

te
ch

ni
ca

l
sc

op
e

ite
ra

tio
n

1

ite
ra

tio
n

2

Data Layer

Business Layer

Data
Layer

ite
ra

tio
n

3

Presentation Layer

Busines
s layesr

Present
ation
Layer

project time

Data Layer

Business
layesr

Presentatio
n Layer As you can see w ith the agileiterative

approach, a vertical slice is built for each
iteration. So any fundamental f law in
design or coding can be picked up early
and rectif ied. Even deployment and testing
w ill be carried out in vertical slices.

Several methodologies fit under this agile development methodology banner. All these methodologies share
many characteristics like iterative and incremental development, test driven development, stand up
meetings to improve communication, automatic testing, build and continuous integration of code etc.
Among all the agile methodologies XP is the one which has got the most attention. Different companies use
different flavours of agile methodologies by using different combinations of methodologies.

How does vertical slicing influence customer perception? With the iterative and incremental approach,
customer will be comfortable with the progress of the development as opposed to traditional big bang approach.

Tradional Vs Agile perce ived functionality

As far as the developer is concerned
65% of coding has been completed but
f rom the customer's view only 20% of
the functionality has been completed

Data Layer

Business Layer

Presentation Layer

Traditional Agile

As far as the developer is concerned
65% of coding has been completed and
from the customer's view 65% of the
functionality has been completed. So
the customer is happy.

Data Layer

Business Layer

Presentation Layer

 EXtreme Programming [XP] simple design, pair programming, unit testing, refactoring, collective code
ownership, coding standards, etc. Refer Q10 in “How would you go about…” section. XP has four key
values: Communication, Feedback, Simplicity and Courage. It then builds up some tried and tested
practices and techniques. XP has a strong emphasis on testing where tests are integrated into continuous
integration and build process, which yields a highly stable platform. XP is designed for smaller teams of 20
– 30 people.

 RUP (Rational Unified Process) Model driven architecture, design and development; customizable

frameworks for scalable process; iterative development methodology; Re-use of architecture, code,
component, framework, patterns etc. RUP can be used as an agile process for smaller teams of 20-30

Enterprise Java

146

people, or as a heavy weight process for larger teams of 50-100 people. Refer Q103 – Q105 in Enterprise
section.

 Feature Driven Development [FDD] Jeff De Luca and long time OO guru Peter Coad developed feature

Driven Development (FDD). Like the other adaptive methodologies, it focuses on short iterations that
deliver tangible functionality. FDD was originally designed for larger project teams of around 50 people. In
FDD's case the iterations are two weeks long. FDD has five processes. The first three are done at the
beginning of the project. The last two are done within each iteration.

1. Develop an Overall Model
2. Build a Features List
3. Plan by Feature
4. Design by Feature
5. Build by Feature

The developers come in two kinds: class owners and chief programmers. The chief programmers are the
most experienced developers. They are assigned features to be built. However they don't build them alone.
Instead the chief programmer identifies which classes are involved in implementing the feature and gathers
their class owners together to form a feature team for developing that feature. The chief programmer acts
as the coordinator, lead designer, and mentor while the class owners do much of the coding of the feature.

 Test Driven Development [TDD] TDD is an iterative software development process where you first write

the test with the idea that it must fail. Refer Q1 in Emerging Technologies/Frameworks section…

 Scrum Scrum divides a project into sprints (aka iterations) of 30 days. Before you begin a sprint you
define the functionality required for that sprint and leave the team to deliver it. But every day the team holds
a short (10 – 15 minute) meeting, called a scrum where the team runs through what it will achieve in the
next day. Some of the questions asked in the scrum meetings are:

 What did you do since the last scrum meetings?
 Do you have any obstacles?
 What will you do before next meeting?

This is very similar to stand-up meetings in XP and iterative development process in RUP.

Enterprise – Key Points

 J2EE is a 3-tier (or n-tier) system. Each tier is logically separated and loosely coupled from each other, and may be

distributed.

 J2EE applications are developed using MVC architecture, which divides the functionality of displaying and

maintaining of the data to minimise the degree of coupling between enterprise components.

 J2EE modules are deployed as ear, war and jar files, which are standard application deployment archive files.

 HTTP is a stateless protocol and state can be maintained between client requests using HttpSession, URL rewriting,

hidden fields and cookies. HttpSession is the recommended approach.

 Servlets and JSPs are by default multi-threaded, and care should be taken in declaring instance variables and

accessing shared resources. It is possible to have a single threaded model of a servlet or a JSP but this can
adversely affect performance.

 Clustering promotes high availability and scalability. The considerations for servlet clustering are:

 Objects stored in the session should be serializable.
 Design for idempotence.
 Avoid using instance and static variables in read and write mode.
 Avoid storing values in the ServletContext.
 Avoid using java.io.* and use getResourceAsStream() instead.

Enterprise Java

147

 JSPs have a translation or a compilation process where the JSP engine translates and compiles a JSP file into a JSP
servlet.

 JSPs have 4 different scope values: page, request, session and application. JSPs can be included statically, where

all the included JSP pages are compiled into a single servlet during the translation or compilation phase or included
dynamically, where included JSPs are compiled into separate servlets and the content generated by these servlets
are included at runtime in the JSP response.

 Avoid scriptlet code in your JSPs and use JavaBeans or custom tags (e.g. Struts tags, JSTL tags, JSF tags etc)

instead.

 Databases can run out cursors if the connections are not closed properly. The valuable resources like connections

and statements should be enclosed in a try{} and finally{} block.

 Prepared statements offer better performance as opposed to statements, as they are precompiled and reuse the

same execution plan with different arguments. Prepared statements are also more secure because they use bind
variables, which can prevent SQL injection attacks.

 JNDI provides a generic interface to LDAP and other directory services like NDS, DNS etc.

 In your code always make use of a logical JNDI reference (java:comp/env/ejb/MyBean) as opposed to physical

JNDI reference (ejb/MyBean) because you cannot guarantee that the physical JNDI location you specify in your
code will be available. Your code will break if the physical location is changed.

 LDAP servers are typically used in J2EE applications to authenticate and authorise users. LDAP servers are

hierarchical and are optimized for read access, so likely to be faster than database in providing read access.

 RMI facilitates object method calls between JVMs. JVMs can be located on separate host machines, still one JVM

can invoke methods belonging to an object residing in another JVM (i.e. address space). RMI uses object
serialization to marshal and unmarshal parameters. The remote objects should extend the UnicastRemoteObject.

 To go through a firewall, the RMI protocol can be embedded within the firewall trusted HTTP protocol, which is called

HTTP tunnelling.

 EJB (i.e. 2.x) is a remote, distributed multi-tier system, which supports protocols like JRMP, IIOP, and HTTP etc. EJB

components contain business logic and system level supports like security, transaction, instance pooling, multi-
threading, object life-cycles etc are managed by the EJB container and hence simplify the programming effort.
Having said this, there are emerging technologies like:

 Hibernate, which is an open source object-to-relational (O/R) mapping framework.
 EJB 3.0, which is taking ease of development very seriously and has adjusted its model to offer the plain old

Java objects (i.e. POJOs) based persistence and the new O/R mapping model based on hibernate.

Refer Q14 – Q18 in Emerging technologies / Frameworks section for brief discussion on hibernate and EJB 3.0.

 EJB transaction attributes (like Required, Mandatory, RequiresNew, Supports etc) are specified declaratively through
EJB deployment descriptors. Isolation levels are not part of the EJB 2.x specification. So the isolation levels can be
set on the resource manager either explicitly on the Connection or via the application server specific configuration.

 A transaction is often described by ACID (Atomic, Consistent, Isolated and Durable) properties. A distributed

transaction is an ACID transaction between two or more independent transactional resources like two separate
databases. A 2-phase commit is an approach for committing a distributed transaction in 2 phases.

 EJB 2.x has two types of exceptions:

 System exception: is an unchecked exception derived from java.lang.RuntimeException. It is thrown by the

system and is not recoverable.
 Application exception: is specific to an application and is thrown because of violation of business rules.

 EJB container managed transactions are automatically rolled back when a system exception occurs. This is possible

because the container can intercept system exceptions. However when an application exception occurs, the
container does not intercept and leaves it to the code to roll back using ctx.setRollbackOnly() method.

 EJB containers can make use of lazy loading (i.e. not creating an object until it is accessed) and dirty marker (ie

persist only the entity beans that have bean modified) strategies to improve entity beans performance.

Enterprise Java

148

 Message Oriented Middleware (MOM) is a software infrastructure that asynchronously communicates with other

disparate systems through the production and consumption of messages. Messaging enables loosely coupled
distributed communication. Java Messaging Service (JMS) is a Java API that allows applications to create, send,
receive read messages in a standard way, hence improves portability.

 Some of the design decisions you need to make in JMS are message acknowledgement modes, transaction modes,

delivery modes etc, synchronous vs. asynchronous paradigm, message body types, setting appropriate timeouts etc.

 XML documents can be processed in your Java/J2EE application either using a SAX parser, which is event driven or

a DOM parser, which creates a tree structure in memory. The other XML related technologies are DTD, XSD, XSL,
XPath, etc and Java and XML based technologies are JAXP, JAXB etc.

 There is an impedance mismatch between object and relational technology. Classes represent both data and

behaviour whereas relational database tables just implement data. Inheritance class structure can be mapped to
relational data model in one of the following ways:

 Map class hierarchy to single database table.
 Map each class to its own table.
 Map each concrete class to its own table
 Generic meta-data driven approach.

 Normalize data in your database for accuracy and denormalize data in your database for performance.

 RUP (Rational Unified Process) has 4 phases in the following order Inception, Elaboration, Construction, and

Transition. Agile (i.e. lightweight) software development process is gaining popularity and momentum across
organizations. Several methodologies like XP, RUP, Scrum, FDD, TDD etc fit under this agile development
methodology banner. All these methodologies share many characteristics like iterative and incremental development,
stand-up meetings to improve communication, automatic build, testing and continuous integration etc.

 UML is applicable to the object oriented (OO) problem solving. There are different types of UML diagrams like use

case diagrams, class diagrams, sequence diagrams, collaboration diagrams, state chart diagrams, activity diagrams,
component diagrams, deployment diagrams etc.

 Class diagrams are vital within OO methods. Class diagrams have the following possible relationships, association,

aggregation, composition, generalization, and dependency.

 Struts is an MVC framework. Struts action classes are not thread-safe and care should be taken in declaring instance

variables or accessing other shared resources. JSF is another Web UI framework like Struts gaining popularity and
momentum.

 Log4j has three main components: loggers, appenders and layouts. Logger is a utility wrapper class. JUnit is an open

source unit-testing framework.

 You can improve the performance of a J2EE application as follows :

1. Manage and recycle your valuable resources like connections, threads etc by either pooling or caching.
2. Use effective design patterns like session façade, value object, fast lane reader etc to minimise network

overheads.
3. Set appropriate timeouts for HttpSession objects.
4. Use JDBC prepared statements as opposed to statements.
5. Release database connections in a finally {} block when finished.
6. Apply least restrictive but valid transaction isolation level.
7. Batch database requests.
8. Minimise serialization costs by marking references like file handles, database connections, etc which do not

require serialization by declaring them transient.

 Some of the J2EE best practices are:

1. Recycle your valuable resources by either pooling or caching.
2. Automate your build process with tools like Ant, CruiseControl, and Maven etc, and continuously integrate your

code into your build process.
3. Build test cases first using tools like JUnit.
4. Use standard J2EE packaging to improve portability.
5. Apply appropriate proven design patterns.

Enterprise Java

149

6. Use proven frameworks like Struts, Spring, Hibernate, JSF, JUnit, Log4J, etc.
7. Handle and propagate exceptions correctly.
8. Avoid resource leaks by closing all database connections after you have used them.

 The goals of application server clustering are to achieve scalability, load balancing, and high availability.

 Java Management Extension (JMX) framework can improve the manageability of your application, for performance

problems, critical events, error conditions etc and perform health checks on your hardware, database server etc.
You can also configure and control your application at runtime.

 Finally get familiarised with some of the key Java & J2EE design patterns like:

1. MVC design pattern: J2EE uses this design pattern or architecture.

2. Chain of responsibility design pattern: Servlet filters use a slightly modified version of chain of responsibility

design pattern.

3. Front controller J2EE design pattern: provides a centralized access point for HTTP request handling to
support the integration system services like security, data validation etc. This is a popular J2EE design pattern.

4. Composite view J2EE design pattern: creates an aggregate view from atomic sub-views.

5. View helper J2EE design pattern: avoids duplication of code. The helper classes are JavaBeans and custom

tags (e.g. Struts tags, JSF tags, JSTL tags etc).

6. Service to worker and dispatcher view J2EE design pattern: These two patterns are a combination of front
controller and view helper patterns with a dispatcher component. These two patterns differ in the way they
suggest different division of responsibility among components.

7. Bridge design pattern: Java Data Base Connectivity (JDBC) uses the bridge design pattern. The JDBC API

provides an abstraction and the JDBC drivers provide the implementation.

8. Proxy design pattern: RMI & EJB uses the proxy design pattern. A popular design pattern.

9. Business delegate J2EE design pattern: used to reduce the coupling between the presentation tier and the
business services tier components.

10. Session façade J2EE design pattern: too many fine-grained method calls between the client and the server

will lead to network overhead and tight coupling. Use a session bean as a façade to provide a coarse-grained
service access layer to clients.

11. Value object J2EE design pattern: avoid fine-grained method calls by creating a value object, which will help

the client, make a coarse-grained call.

12. Fast-lane reader J2EE design pattern: access the persistence layer directly using a DAO (Data Access

Object) pattern instead of using entity beans.

13. Service locator J2EE design pattern: expensive and redundant JNDI lookups can be avoided by caching

and reusing the already looked up service objects.

Recommended reading on J2EE design patterns:
 Core J2EE Patterns: Best Practices and Design Strategies, Second Edition (Hardcover) by Deepak Alur, Dan Malks,

John Crupi.

Enterprise Java

150

LF DC

DP SF

CI PI

MI SI

SE EH

TI BP

SD

CO

Let us put all together in
the next section

How would you go about…?

151

SECTION THREE

How would you go about…?

 This section basically assesses your knowledge of how to perform certain
tasks like documenting your project, identifying any potential performance,
memory, transactional, and/or design issues etc.

 It also assesses if you have performed any of these tasks before. If you have

not done a particular task, you can demonstrate that you know how to go about
it if the task is assigned to you.

 This section also recaps some of the key considerations discussed in the Java

and Enterprise sections. Question numbers are used for cross-referencing
with Java and Enterprise sections.

 Q11 & Q13 are discussed in more detail and can be used as a quick reference

guide in a software project. All the other questions excluding Q11 & Q13 can
be read just before an interview.

How would you go about…?

152

Q 01: How would you go about documenting your Java/J2EE application?
A 01: To be successful with a Java/J2EE project, proper documentation is vital.

 Before embarking on coding get the business requirements down. Build a complete list of requested features,
sample screen shots (if available), use case diagrams, business rules etc as a functional specification
document. This is the phase where business analysts and developers will be asking questions about user
interface requirements, data tier integration requirements, use cases etc. Also prioritize the features based on
the business goals, lead-times and iterations required for implementation.

 Prepare a technical specification document based on the functional specification. The technical
specification document should cover:

 Purpose of the document: This document will emphasise the customer service functionality …

 Overview: This section basically covers background information, scope, any inclusions and/or
exclusions, referenced documents etc.

 Basic architecture: discusses or references baseline architecture document. Answers questions like
Will it scale? Can this performance be improved? Is it extendable and/or maintainable? Are there any
security issues? Describe the vertical slices to be used in the early iterations, and the concepts to be
proved by each slice. Etc. For example which MVC [model-1, model-2 etc] paradigms (Refer Q3 in
Enterprise section for MVC) should we use? Should we use Struts, JSF, Spring etc or build our own
framework? Should we use a business delegate (Refer Q83 in Enterprise section for business delegate)
to decouple middle tier with the client tier? Should we use AOP (Aspect Oriented Programming) (Refer
Q3 in Emerging Technologies/Frameworks)? Should we use dependency injection? Should we use
annotations? Do we require internationalization? Etc.

 Assumptions, Dependencies, Risks and Issues: highlight all the assumptions, dependencies, risks
and issues. For example list all the risks you can identify.

 Design alternatives for each key functional requirement. Also discuss why a particular design
alternative was chosen over the others. This process will encourage developers analyse the possible
design alternatives without having to jump at the obvious solution, which might not always be the best
one.

 Processing logic: discuss the processing logic for the client tier, middle tier and the data tier. Where
required add process flow diagrams. Add any pre-process conditions and/or post-process conditions.
(Refer Q9 in Java section for design by contract).

 UML diagrams to communicate the design to the fellow developers, solution designers, architects etc.
Usually class diagrams and sequence diagrams are required. The other diagrams may be added for any
special cases like (Refer Q107 in Enterprise section):

 State chart diagram: useful to describe behaviour of an object across several usecases.

 Activity diagram: useful to express complex operations. Supports and encourages parallel

behaviour. Activity and statechart diagrams are beneficial for workflow modelling with multi
threaded programming.

 Collaboration and Sequence diagrams: Use a collaboration or sequence diagram when you
want to look at behaviour of several objects within a single use case. If you want to look at a single
object across multiple use cases then use statechart.

 Object diagrams: The Object diagrams show instances instead of classes. They are useful for
explaining some complicated objects in detail such as highlighting recursive relationships etc.

 List the package names, class names, database names and table names with a brief description of
their responsibility in a tabular form.

 Prepare a coding standards document for the whole team to promote consistency and efficiency. Some

coding practices can degrade performance for example:

 Inappropriate use of String class. Use StringBuffer instead of String for compute intensive mutations
(Refer Q17 in Java section).

How would you go about…?

153

 Code in terms of interface. For example you might decide the LinkedList is the best choice for some

application, but then later decide ArrayList might be a better choice. (Refer Q15 in Java section)

Wrong approach ArrayList list = new ArrayList();
Right approach List list = new ArrayList(100)

 Set the initial capacity of a collection appropriately (e.g. ArrayList, HashMap etc). (Refer Q15 in Java

section).

 To promote consistency define standards for variable names, method names, use of logging, curly
bracket positions etc.

 Prepare a code review document and templates for the whole team. Let us look at some of the elements the
code review should cover:

 Proper variable declaration: e.g. instance versus static variables, constants etc.

 Performance issues: e.g. Use ArrayList, HashMap etc instead of Vector, Hashtable when there is

no thread-safety issue.

 Memory issues: e.g. Improper instantiation of objects instead of object reuse and object pooling, not
closing valuable resource in a finally block etc.

 Thread-safety issues: e.g. Java API classes like SimpleDateFormat, Calendar, DecimalFormat etc

are not thread safe, declaring variables in JSP is not thread safe, storing state information in Struts
action class or multi-threaded servlet is not thread safe.

 Error handling: e.g. Re-throwing exception without nesting original exception, EJB methods not

throwing EJB exception for system exceptions, etc.

 Use of coding standards: e.g. not using frameworks, System.out is used instead of log4j etc.

 Design issues: No re-use of code, no clear separation of responsibility, invalid use of inheritance to
get method reuse, servlets performing JDBC direct access instead of using DAO (Data Access
Objects) classes, HTML code in Struts action or servlet classes, servlets used as utility classes
rather than as a flow controller etc.

 Documentation of code: e.g. No comments, no header files etc

 Bugs: e.g. Calling setAutoCommit within container-managed transaction, binary OR “|” used instead

of logical OR “||”, relying on pass-by-reference in EJB remote calls, ResultSet not being closed on
exceptions, EJB methods not throwing EJBException for system exceptions etc (Refer Q76 & Q77 in
Enterprise section)

 Prepare additional optional guideline documents as per requirements to be shared by the team. This will

promote consistency and standards. For example:

 Guidelines to setting up J2EE development environment.
 Guidelines to version control system (CVS, VSS etc).
 Guidelines to deployment steps, environment settings, ant targets etc.
 Guidelines for the data modelling (any company standards).
 Guidelines for error handling (Refer Q34, Q35 in Java section & Q76, Q77 in Enterprise section).
 Guidelines for user interface design.
 Project overview document.
 Software development process document etc.

Some of the above mentioned documents, which are shared by the whole team, can be published in an internal
website like Wiki. Wiki is a piece of server software that allows users to freely create and edit Web page content
using any Web browser.

Q 02: How would you go about designing a Java/J2EE application?

How would you go about…?

154

A 02: Design should be specific to a problem but also should be general enough to address future requirements.
Designing reusable object oriented software involves decomposing the business use cases into relevant objects
and converting objects into classes.

 Create a tiered architecture: client tier, business tier and data tier. Each tier can be further logically divided

into layers (Refer Q2, Q3 on Enterprise section). Use MVC (Model View Controller architecture for the J2EE
and Java based GUI applications).

 Create a data model: A data model is a detailed specification of data oriented structures. This is different

from the class modelling because it focuses solely on data whereas class models allow you to define both
data and behaviour. Conceptual data models (aka domain models) are used to explore domain concepts
with project stakeholders. Logical data models are used to explore the domain concepts, and their
relationships. Logical data models depict entity types, data attributes end entity relationships (with Entity
Relationship (ER) diagrams). Physical data models are used to design the internal schema of a database
depicting the tables, columns, and the relationships between the tables. Data models can be created by
performing the following tasks:

 Identify entity types, attributes and relationships: use entity relationship (E-R) diagrams.

 Apply naming conventions (e.g. for tables, attributes, indices, constraints etc): Your organization

should have standards and guidelines applicable to data modelling.

 Assign keys: surrogate keys (e.g. assigned by the database like Oracle sequences etc, max()+1,
universally unique identifiers UUIDs, etc), natural keys (e.g. Tax File Numbers, Social Security Numbers
etc), and composite keys.

 Normalize to reduce data redundancy and denormalize to improve performance: Normalized data

have the advantage of information being stored in one place only, reducing the possibility of inconsistent
data. Furthermore, highly normalized data are loosely coupled. But normalization comes at a
performance cost because to determine a piece of information you have to join multiple tables whereas
in a denormalized approach the same piece of information can be retrieved from a single row of a table.
Denormalization should be used only when performance testing shows that you need to improve
database access time for some of your tables.

Note: Creating a data model (logical, physical etc) before design model is a matter of preference, but many OO methodologies
are based on creating the data model from the object design model (i.e. you may need to do some work to create an explicit
data model but only after you have a complete OO domain and design model). In many cases when using ORM tools like
Hibernate, you do not create the data model at all.

 Create a design model: A design model is a detailed specification of the objects and relationships between

the objects as well as their behaviour. (Refer Q107 on Enterprise section)

 Class diagram: contains the implementation view of the entities in the design model. The design model
also contains core business classes and non-core business classes like persistent storage, security
management, utility classes etc. The class diagrams also describe the structural relationships between
the objects.

 Use case realizations: are described in sequence and collaboration diagrams.

 Design considerations when decomposing business use cases into relevant classes: designing

reusable and flexible design models requires the following considerations:

 Granularity of the objects (fine-grained, coarse-grained etc): Can we minimise the network trip by
passing a coarse-grained value object instead of making 4 network trips with fine-grained parameters?
(Refer Q85 in Enterprise section). Should we use method level (coarse-grained) or code level (fine-
grained) thread synchronization? (Refer Q40 in Java section). Should we use a page level access
security or a fine-grained programmatic security?

 Coupling between objects (loosely coupled versus strongly coupled). Should we use business

delegate pattern to loosely couple client and business tier? (Refer Q83 in Enterprise section) or Should
we use dependency injection? (Refer Q09 in Emerging Technologies/Frameworks).

 Network overheads for remote objects like EJB, RMI etc: Should we use the session façade, value

object patterns? (Refer Q84 & Q85 in Enterprise section).

How would you go about…?

155

 Definition of class interfaces and inheritance hierarchy: Should we use an abstract class or an
interface? Is there any common functionality that we can move to the super class (or parent class)?
Should we use interface inheritance with object composition for code reuse as opposed to
implementation inheritance? Etc. (Refer Q8, Q10 in Java section).

 Establishing key relationships (aggregation, composition, association etc): Should we use

aggregation or composition? [composition may require cascade delete] (Refer Q107, Q108 in Enterprise
section – under class diagrams). Should we use an “is a” (generalization) relationship or a “has a”
(composition) relationship? (Refer Q7 in Java section).

 Applying polymorphism and encapsulation: Should we hide the member variables to improve

integrity and security? (Refer Q8 in Java section). Can we get a polymorphic behaviour so that we can
easily add new classes in the future? (Refer Q8 in Java section).

 Applying well-proven design patterns (like Gang of four design patterns, J2EE design patterns, EJB

design patterns etc) help designers to base new designs on prior experience. Design patterns also help
you to choose design alternatives (Refer Q11 in How would you go about…).

 Scalability of the system: Vertical scaling is achieved by increasing the number of servers running on

a single machine. Horizontal scaling is achieved by increasing the number of machines in the cluster.
Horizontal scaling is more reliable than the vertical scaling because there are multiple machines involved
in the cluster. In vertical scaling the number of server instances that can be run on one machine are
determined by the CPU usage and the JVM heap memory.

 How do we replicate the session state? Should we use stateful session beans or HTTP session?

Should we serialize this object so that it can be replicated?

 Internationalization requirements for multi-language support: Should we support other languages?
Should we support multi-byte characters in the database?

 Vertical slicing: Getting the reusable and flexible design the first time is impossible. By developing the initial

vertical slice of your design you eliminate any nasty integration issues later in your project. Also get the
design patterns right early on by building the vertical slice. It will give you experience with what does work and
what does not work with Java/J2EE. Once you are happy with the initial vertical slice then you can apply it
across the application. The initial vertical slice should be based on a typical business use case. Refer Q136
in Enterprise section.

 Ensure the system is configurable through property files, xml descriptor files, annotations etc. This will

improve flexibility and maintainability. Avoid hard coding any values. Use a constant class for values, which
rarely change and use property files, xml descriptor files, annotations etc for values, which can change more
frequently (e.g. process flow steps etc) and/or environment related configurations(e.g. server name, server
port, LDAP server location etc).

 Design considerations during design, development and deployment phases: designing a fast, secured,

reliable, robust, reusable and flexible system require considerations in the following key areas:

 Performance issues (network overheads, quality of the code etc): Can I make a single coarse-grained
network call to my remote object instead of 3 fine-grained calls?

 Concurrency issues (multi-threading etc): What if two threads access my object simultaneously will it

corrupt the state of my object?

 Transactional issues (ACID properties): What if two clients access the same data simultaneously?
What if one part of the transaction fails, do we rollback the whole transaction? What if the client
resubmits the same transactional page again?

 Security issues: Are there any potential security holes for SQL injection or URL injection by hackers?

 Memory issues: Is there any potential memory leak problems? Have we allocated enough heap size for

the JVM? Have we got enough perm space allocated since we are using 3rd party libraries, which
generate classes dynamically? (e.g. JAXB, XSLT, JasperReports etc)

 Scalability issues: Will this application scale vertically and horizontally if the load increases? Should

this object be serializable? Does this object get stored in the HttpSession?

How would you go about…?

156

 Maintainability, reuse, extensibility etc: How can we make the software reusable, maintainable and
extensible? What design patterns can we use? How often do we have to refactor our code?

 Logging and auditing if something goes wrong can we look at the logs to determine the root cause of

the problem?

 Object life cycles: Can the objects within the server be created, destroyed, activated or passivated
depending on the memory usage on the server? (e.g. EJB).

 Resource pooling: Creating and destroying valuable resources like database connections, threads etc

can be expensive. So if a client is not using a resource can it be returned to a pool to be reused when
other clients connect? What is the optimum pool size?

 Caching can we save network trips by storing the data in the server’s memory? How often do we have

to clear the cache to prevent the in memory data from becoming stale?

 Load balancing: Can we redirect the users to a server with the lightest load if the other server is
overloaded?

 Transparent fail over: If one server crashes can the clients be routed to another server without any

interruptions?

 Clustering: What if the server maintains a state when it crashes? Is this state replicated across the
other servers?

 Back-end integration: How do we connect to the databases and/or legacy systems?

 Clean shutdown: Can we shut down the server without affecting the clients who are currently using the

system?

 Systems management: In the event of a catastrophic system failure who is monitoring the system? Any
alerts or alarms? Should we use JMX? Should we use any performance monitoring tools like Tivoli etc?

 Dynamic redeployment: How do we perform the software deployment while the site is running? (Mainly

for mission critical applications 24hrs X 7days).

 Portability issues: Can I port this application to a different server 2 years from now?

Q 03: How would you go about identifying performance and/or memory issues in your Java/J2EE application?
A 03: Profiling can be used to identify any performance issues or memory leaks. Profiling can identify what lines of code

the program is spending the most time in? What call or invocation paths are used to reach at these lines? What
kinds of objects are sitting in the heap? Where is the memory leak? Etc.

 There are many tools available for the optimization of Java code like JProfiler, Borland OptimizeIt etc.

These tools are very powerful and easy to use. They also produce various reports with graphs.

Optimizeit™ Request Analyzer provides advanced profiling techniques that allow developers to analyse the
performance behaviour of code across J2EE application tiers. Developers can efficiently prioritize the
performance of Web requests, JDBC, JMS, JNDI, JSP, RMI, and EJB so that trouble spots can be
proactively isolated earlier in the development lifecycle.

Thread Debugger tools can be used to identify threading issues like thread starvation and contention issues
that can lead to system crash.

Code coverage tools can assist developers with identifying and removing any dead code from the
applications.

 Hprof which comes with JDK for free. Simple tool.

Java –Xprof myClass

java -Xrunhprof:[help]|[<option>=<value>]
java -Xrunhprof:cpu=samples, depth=6, heap=sites

How would you go about…?

157

 Use operating system process monitors like NT/XP Task Manager on PCs and commands like ps, iostat,
netstat, vmstat, uptime, nfsstat etc on UNIX machines.

 Write your own wrapper MemoryLogger and/or PerformanceLogger utility classes with the help of

totalMemory() and freeMemory() methods in the Java Runtime class for memory usage and
System.currentTimeMillis() method for performance. You can place these MemoryLogger and
PerformanceLogger calls strategically in your code. Even better approach than utility classes is using Aspect
Oriented Programming (AOP) for pre and post memory and/or performance recording where you have the
control of activating memory/performance measurement only when needed. (Refer Q3 – Q5 in Emerging
Technologies/Frameworks section).

Q 04: How would you go about minimising memory leaks in your Java/J2EE application?
A 04: Java’s’ memory management (i.e. Garbage Collection) prevents lost references and dangling references but it is

still possible to create memory leaks in other ways. If the application runs with memory leaks for a long duration
you will get the error java.lang.OutOfMemoryError.

In Java, typically the memory leak occurs when an object of a longer lifecycle has a reference to the objects
of a short life cycle. This prevents the objects with short life cycle being garbage collected. The developer must
remember to remove the reference to the short-lived objects from the long-lived objects. Objects with the same life
cycle do not cause any problem because the garbage collector is smart enough to deal with the circular references
(Refer Q33 in Java section).

 Java collection classes like Hashtable, ArrayList etc maintain references to other objects. So having a long life

cycle ArrayList pointing to many short-life cycle objects can cause memory leaks.

 Commonly used singleton design pattern (Refer Q45 in Java section) can cause memory leaks. Singletons
typically have a long life cycle. If a singleton has an ArrayList or a Hashtable then there is a potential for
memory leaks.

 Java programming language includes a finalize method that allows an object to free system resources, in

other words, to clean up after itself. However using finalize doesn't guarantee that a class will clean up
resources expediently. A better approach for cleaning up resources involves the finally method and an explicit
close statement. So freeing up the valuable resource in the finalize method or try {} block instead of finally {}
block can cause memory leaks (Refer Q45 in Enterprise section).

Q 05: How would you go about improving performance in your Java/J2EE application?
A 05: The performance bottlenecks can be attributed to one or more of the following:

Performance optimization considerations

Java
infrastructure

Application level

System
level

Network I/O, Disk I/O etc
Operating System
System configuration, topology etc
Hardware (CPU, memory, I/O etc)

Application design.
Application Server tuning.
Application coding.
Drivers etc.
Database partitioning, tuning etc

JVM selection
JVM tuning (min & max heap size, perm size etc

 Let us discuss some of the aspects in detail:

 Java/J2EE application code related performance bottlenecks:

 Refer Q63 in Java section.

How would you go about…?

158

 Refer Q123, Q125 in Enterprise section.

 Java/J2EE design related performance bottlenecks. Application design is one of the most important
considerations for performance. A well-designed application will not only avoid many performance pitfalls but
will also be easier to maintain and modify during the performance-testing phase of the project.

 Use proper design patterns to minimise network trips (session facade, value object Refer etc Q83-

Q87 in Enterprise section).

 Minimise serialization cost by implementing session beans with remote interfaces and entity beans
with local interfaces (applicable to EJB 2.x) or even the session beans can be implemented with local
interfaces sharing the same JVM with the Web tier components. For EJB1.x some EJB containers can
be configured to use pass-by-reference instead of pass-by-value (pass-by-value requires serialization)
Refer Q69, Q82 in Enterprise section.

 Use of multi-threading from a thread-pool (say 10 – 50 threads). Using a large number of threads

adversely affects performance by consuming memory through thread stacks and CPU by context
switching.

 Database related performance bottlenecks.

 Use proper database indexes. Numeric indices are more efficient than character based indices. Minimise

the number of columns in your composite keys. Performing a number of “INSERT” operations is more
efficient when fewer columns are indexed and “SELECT” operations are more efficient when, adequately
indexed based on columns frequently used in your “WHERE” clause. So it is a trade-off between
“SELECT” and “INSERT” operations.

 Minimise use of composite keys or use fewer columns in your composite keys.

 Partition the database for performance based on the most frequently accessed data and least frequently

accessed data.

 Identify and optimise your SQL queries causing performance problems (Refer Q97 in Enterprise
section).

 De-normalise your tables where necessary for performance (Refer Q98 in Enterprise section).

 Close database connections in your Java code in the finally block to avoid any ‘open cursors’ problem

(Refer Q45 in Enterprise section).

 Use optimistic concurrency as opposed to pessimistic concurrency where appropriate (Refer Q78 in
Enterprise section).

 Application Server, JVM, Operating System, and/or hardware related performance bottlenecks.

 Application Server: Configure the application server for optimum performance (Refer Q88, Q123 in

Enterprise section).

 Operating System: Check for any other processes clogging up the system resources, maximum
number of processes it can support or connect, optimise operating system etc.

 Hardware: Insufficient memory, insufficient CPU, insufficient I/O, limitation of hardware configurations,

network constraints like bandwidth, message rates etc.

Q 06: How would you go about identifying any potential thread-safety issues in your Java/J2EE application?
A 06: When you are writing graphical programs like Swing or Internet programs using servlets or JSPs multi-threading is

a necessity for all but some special and/or trivial programs.

An application program or a process can have multiple threads like multiple processes that can run on one
computer. The multiple threads appear to be doing their work in parallel. When implemented on a multi-processor
machine, they can actually work in parallel.

How would you go about…?

159

Unlike processes, threads share the same address space (Refer Q36 in Java section) which means they can read
and write the same variables and data structures. So care should be taken to avoid one thread disturbing the work
of another thread. Let us look at some of the common situations where care should be taken:

 Swing components can only be accessed by one thread at a time. A few operations are guaranteed to be
thread safe but the most others are not. Generally the Swing components should be accessed through an
event-dispatching thread. (Refer Q53 in Java section).

 A typical Servlet life cycle creates a single instance of each servlet and creates multiple threads to handle the

service() method. The multi-threading aids efficiency but the servlet code must be coded in a thread
safe manner. The shared resources (e.g. instance variable) should be appropriately synchronized or should
only use variables in a read-only manner. (Refer Q16 in Enterprise section).

 The declaration of variables in JSP is not thread-safe, because the declared variables end up in the

generated servlet as an instance variable, not within the body of the _jspservice() method. (Refer Q34 in
Enterprise section).

 Struts framework action classes are not thread-safe. (Refer Q113 in Enterprise section).

 Some Java collection classes like Hashmap, ArrayList etc are not thread-safe. (Refer Q13 in Java section).

 Some of the Java core library classes are not thread safe. For e.g. java.util.SimpleDateFormat,

java.util.Locale etc.

Q 07: How would you go about identifying any potential transactional issues in your Java/J2EE application?
A 07:

 When a connection is created, it is in auto-commit mode. This means that each individual SQL statement is
treated as a transaction and will be automatically committed immediately after it is executed. The way to
allow two or more statements to be grouped into a transaction is to disable auto-commit mode. (Refer Q43 in
Enterprise section). Disabling auto-commit mode can improve performance by minimising number of times it
accesses the database.

 A transaction is often described by ACID properties (Atomic, Consistent, Isolated and Durable). A

distributed transaction is an ACID transaction between two or more independent transactional resources
like two separate databases. For a transaction to commit successfully, all of the individual resources must
commit successfully. If any of them are unsuccessful, the transaction must rollback in all of the resources. A
2-phase commit is an approach for committing a distributed transaction in 2 phases. Refer Q73 in
Enterprise section.

 Isolation levels provide a degree of control of the effects one transaction can have on another concurrent

transaction. Concurrent effects are determined by the precise ways in which, a particular relational database
handles locks and its drivers may handle these locks differently. Isolation levels are used to overcome
transactional problems like lost update, uncommitted data (aka dirty reads), inconsistent data (aka. phantom
update), and phantom insert. Higher isolation levels can adversely affect performance at the expense of data
accuracy. Refer Q72 in Enterprise section.

Isolation Level Lost Update Uncommitted Data Inconsistent Data Phantom Insert
Read Uncommitted Prevented by DBMS Can happen Can happen Can happen
Read Committed Prevented by DBMS Prevented by DBMS Can happen Can happen
Repeatable Read Prevented by DBMS Prevented by DBMS Prevented by DBMS Can happen
Serializable Prevented by DBMS Prevented by DBMS Prevented by DBMS Prevented by DBMS

 Decide between optimistic and pessimistic concurrency control. (Refer Q78 in Enterprise section).

 Evaluate a strategy to determine if the data is stale when using strategies to cache data. (Refer Q79 in

Enterprise section).

EJB related transactional issues:

 Set the appropriate transactional attributes for the EJBs. (Refer Q71 in Enterprise section).

 Set the appropriate isolation level for the EJB. The isolation level should not be any more restrictive than it
has to be. Higher isolation levels can adversely affect performance. (Refer Q72 in Enterprise section).
Isolation levels are application server specific and not part of the standard EJB configuration.

How would you go about…?

160

 In EJB 2.x, transactions are rolled back by the container when a system exception is thrown. When an

application exception is thrown then the transactions are not rolled back by the container. So the developer
has to roll it back using ctx.setRollbackOnly() call. (Refer Q76, Q77 in Enterprise section).

 Detect doomed transactions to avoid performing any unnecessary compute intensive operations. (Refer Q72

in Enterprise section).

Q 08: How would you go about applying the Object Oriented (OO) design concepts in your Java/J2EE application?
A 08:

Question Answer
What are the key
characteristics of
an OO language
like Java?

A true object oriented language should support the following 3 characteristics:

 Encapsulation (aka information hiding): implements information hiding and modularity
(abstraction).

 Polymorphism: The same message sent to different objects, results in behaviour that is dependent

on the nature of the object receiving the message.

 Inheritance: Encourages code reuse and code organisation by defining the new class based on the
existing class.

What is dynamic binding?

Dynamic binding (aka late binding): The dynamic binding is used to implement polymorphism. Objects
could come from local process or from across the network from a remote process. We should be able to
send messages to objects without having to know their types at the time of writing the code. Dynamic
binding provides maximum flexibility at the execution time. Usually dynamic binding or late binding takes
a small performance hit.

Refer Q8 in Java section.

Let us take an example to illustrate dynamic binding through polymorphic behaviour:

Say you have a method in Java

void draw(Shape s) {
 s.erase();
 // ...
 s.draw();
}

The above method will talk to any shape, so it is independent of the specific type of object it is
erasing and drawing. Now let us look at some other program, which is making use of this
draw(Shape s) method:

Circle cir = new Circle();
Square sq = new Square();

draw(cir);
draw(sq);

So the interesting thing is that the method call to draw(Shape s) will cause different code to be
executed. So you send a message to an object even though you don’t know what specific type it is
and the right thing happens. This is called dynamic binding, which gives you polymorphic behaviour.

How will you
decide whether to
use an interface or
an abstract class?

 Abstract Class: Often in a design, you want the base class to present only an interface for its
derived classes. That is, you don’t want anyone to actually create an object of the base class, only
to upcast to it so that its interface can be used. This is accomplished by making that class abstract
using the abstract key word. If anyone tries to make an object of an abstract class, the compiler
prevents them. This is a tool to enforce a particular design.

 Interface: The interface key word takes the concept of an abstract class one step further by

preventing any function definitions at all. An interface is a very useful and commonly used tool, as it
provides the perfect separation of interface and implementation. In addition, you can combine many
interfaces together, if you wish. (You cannot inherit from more than one regular class or abstract
class.)

Now the design decision…

How would you go about…?

161

When to use an Abstract Class: Abstract classes are excellent candidates inside of application
frameworks. Abstract classes let you define some default behaviour and force subclasses to provide
any specific behaviour.

When to use an Interface: If you need to change your design frequently, I prefer using interface to
abstract. For example, the strategy pattern lets you swap new algorithms and processes into your
program without altering the objects that use them. Example: Strategy Design Pattern.

Another justification of interfaces is that they solved the ‘diamond problem’ of traditional multiple
inheritance. Java does not support multiple inheritances. Java only supports multiple interface
inheritance. Interface will solve all the ambiguities caused by this ‘diamond problem’. Refer Q10 in
Java section.

Interface inheritance vs. Implementation inheritance: Prefer interface inheritance to implementation
inheritance because it promotes the design concept of coding to an interface and reduces
coupling. Interface inheritance can achieve code reuse with the help of object composition. Refer
Q08 in Java section.

Why abstraction is
important in Object
Oriented
programming?

The software you develop should optimally cater for the current requirements and problems and also
should be flexible enough to easily handle future changes.

Abstraction is an important OO concept. The ability for a program to ignore some aspects of the
information that it is manipulating, ie. Ability to focus on the essential. Each object in the system serves
as a model of an abstract "actor" that can perform work, report on and change its state, and
"communicate" with other objects in the system, without revealing how these features are implemented.
Abstraction is the process where ideas are distanced from the concrete implementation of the objects.
The concrete implementation will change but the abstract layer will remain the same.

Let us look at an analogy:

When you drive your car you do not have to be concerned with the exact internal working of your car
(unless you are a mechanic). What you are concerned with is interacting with your car via its interfaces
like steering wheel, brake pedal, accelerator pedal etc. Over the years a car’s engine has improved a lot
but its basic interface has not changed (ie you still use steering wheel, brake pedal, accelerator pedal etc
to interact with your car). This means that the implementation has changed over the years but the
interface remains the same. Hence the knowledge you have of your car is abstract.

Black-box reuse is when a class uses another class without knowing the internal contents of it. The
black-box reuses are:

 Dependency is the weakest type of black-box reuse.
 Association is when one object knows about or has a relationship with the other objects.
 Aggregation is the whole part relationship where one object contains one or more of the other

objects.
 Composition is a stronger whole part relationship

Refer Q107, Q108 in Enterprise section

White-box reuse is when a class knows internal contents of another class. E.g. inheritance is used to
modify implementation for reusability.

Aggregation (Black-box reuse) Inheritance (White-box reuse)

Defined dynamically or at run time via object
references. Since only interfaces are used, it has
the advantage of maintaining the integrity (ie
encapsulation).

Inheritance is defined statically or at compile time.
Inheritance allows an easy way to modify
implementation for reusability.

Explain black-box
reuse and white-
box reuse? Should
you favour
Inheritance (white-
box reuse) or
aggregation
(black-box reuse)?

Disadvantage of aggregation is that it increases
the number of objects and relationships.

A disadvantage of inheritance is that it breaks
encapsulation, which implies implementation
dependency. This means when you want to carry
out the redesign the super class (ie parent class)
has to be modified or replaced which is more likely
to affect the subclasses as well. In general it will
affect the whole inheritance hierarchy.

Verdict: So the tendency is to favour aggregation
over inheritance.

How would you go about…?

162

What is your
understanding on
Aspect Oriented
Programming
(AOP)?

Aspect-Oriented Programming (AOP) complements OO programming by allowing developers to
dynamically modify the static OO model to create a system that can grow to meet new requirements.

AOP allows us to dynamically modify our static model to include the code required to fulfil the secondary
requirements (like auditing, logging, security, exception handling etc) without having to modify the
original static model (in fact, we don't even need to have the original code). Better still, we can often keep
this additional code in a single location rather than having to scatter it across the existing model, as we
would have to if we were using OO on its own. (Refer Q3 –Q5 in Emerging Technologies/Frameworks
section.)

For example A typical Web application will require a servlet to bind the HTTP request to an object and
then passes to the business handler object to be processed and finally return the response back to the
user. So initially only a minimum amount of code is required. But once you start adding all the other
additional secondary requirements (aka crosscutting concerns) like logging, auditing, security,
exception-handling etc the code will inflate to 2-4 times its original size. This is where AOP can help.

Q 09: How would you go about applying the UML diagrams in your Java/J2EE project?
A 09:

Question Answer
Explain the key
relationships in the
use case diagrams?

Refer Q107 in Enterprise section. Use case has 4 types of relationships:

Between actor and use case

 Association: Between actor and use case. May be navigable in both directions according to
the initiator of the communication between the actor and the usecase.

Between use cases

 Extends: This is an optional extended behaviour of a use case. This behaviour is executed only
under certain conditions such as performing a security check etc.

 Includes: This specifies that the base use case needs an additional use case to fully describe

its process. It is mainly used to show common functionality that is shared by several use cases.

 Inheritance (or generalization): Child use case inherits the behaviour of its parent. The child
may override or add to the behaviour of the parent.

U s e c a s e d i a g r a m

p e r f o r m s e c u r i t y
c h e c k

I n t e r n a t i o n a l S t u d e n t

R e g i s t r a r

S t u d e n t

E n r o l l i n U n i v e r s i
t y E n r o l l i n s e m i n a r

E n r o l l f a m i l y
m e m b e r s

* *

a s s o c i a t i o n

a s s o c i a t i o n

a s s o c i a t i o n

i n h e r i t a n c e

< < i n c l u d e > >

i n h e r i t a n c e

< < e x t e n d > >

N o t e :
< < e x t e n d > > r e l a t i o n s h i p i s c o n d i t i o n a l . Y o u d o
n o t k n o w i f o r w h e n e x t e n d i n g u s e c a s e w i l l b e
i n v o k e d .
< < i n c l u d e > > r e l a t i o n s h i p i s s i m i l a r t o a
p r o c e d u r e c a l l .
i n h e r i t a n c e : e x t e n d s t h e b e h a v i o r o f t h e
p a r e n t u s e c a s e o r a c t o r .

What is the main
difference between the
collaboration diagram
and the sequence
diagram?

Refer Q107 in Enterprise section:

Collaboration diagrams convey the same message as sequence diagrams but the collaboration
diagrams focus on object roles instead of times in which the messages are sent. The sequence
diagram is time line driven.

When to use various
UML diagrams?

Refer Q107 in Enterprise section.

 Use case diagrams:

 Determining the user requirements. New use cases often generate new requirements.
 Communicating with clients. The simplicity of the diagram makes use case diagrams a

good way for designers and developers to communicate with clients.
 Generating test cases. Each scenario for the use case may suggest a suite of test

How would you go about…?

163

cases.

 Class diagrams:

 Class diagrams are the backbone of Object Oriented methods. So they are used
frequently.

 Class diagrams can have a conceptual perspective and an implementation perspective.
During the analysis draw the conceptual model and during implementation draw the
implementation model.

 Interaction diagrams (Sequence and/or Collaboration diagrams):

 When you want to look at behaviour of several objects within a single use case. If

you want to look at a single object across multiple use cases then use statechart
diagram as described below.

 State chart diagrams:

 Statechart diagrams are good at describing the behaviour of an object across

several use cases. But they are not good at describing the interaction or collaboration
between many objects. Use interaction and/or activity diagrams in conjunction with the
statechart diagram to communicate complex operations involving multi-threaded
programs etc.

 Use it only for classes that have complex state changes and behaviour. For example:

the User Interface (UI) control objects, Objects shared by multi-threaded programs etc.

 Activity diagram:

 Activity and Statechart diagrams are generally useful to express complex operations.
The great strength of activity diagrams is that they support and encourage parallel
behaviour. An activity and statechart diagrams are beneficial for workflow modelling
with multi threaded programming.

Q 10: How would you go about describing the software development processes you are familiar with?
A 10: In addition to technical questions one should also have a good understanding of the software development

process.
Question Answer
What is the key
difference between the
waterfall approach and
the iterative approach
to software
development? How to
decide which one to
use?

Refer Q103 – Q105 in Enterprise section

Waterfall approach is sequential in nature. The iterative approach is non-sequential and
incremental. The iterative and incremental approach has been developed based on the following:

• You can't express all your needs up front. It is usually not feasible to define in detail (that is,

before starting full-scale development) the operational capabilities and functional characteristics
of the entire system. These usually evolve over time as development progresses.

• Technology changes over time. Some development lifecycle spans a long period of time

during which, given the pace at which technology evolves, significant technological shifts may
occur.

• Complex systems. This means it is difficult to cope with them adequately unless you have an

approach for mastering complexity.

How to decide which one to use?

Waterfall approach is more suitable in the following circumstances:

• Have a small number of unknowns and risks. That is if
• It has a known domain.
• The team is experienced in current process and technology.
• There is no new technology.
• There is a pre-existing architecture baseline.

• Is of short duration (two to three months).
• Is an evolution of an existing system?

The iterative approach is more suitable (Refer Q136 in Enterprise Section)

• Have a large number of unknowns and risks. So it pays to design, develop and test a
vertical slice iteratively and then replicate it through other iterations. That is if

How would you go about…?

164

• Integrating with new systems.
• New technology and/or architecture.
• The team is fairly keen to adapt to this new process.

• Is of large duration (longer than 3 months).
• Is a new system?

Have you used
extreme programming
techniques? Explain?

Extreme Programming (or XP) is a set of values, principles and practices for rapidly developing high-
quality software that provides the highest value for the customer in the fastest way possible. XP is a
minimal instance of RUP. XP is extreme in the sense that it takes 12 well-known software
development "best practices" to their logical extremes.

The 12 core practices of XP are:

1. The Planning Game: Business and development cooperate to produce the maximum

business value as rapidly as possible. The planning game happens at various scales, but the
basic rules are always the same:

 Business comes up with a list of desired features for the system. Each feature is written

out as a user story (or PowerPoint screen shots with changes highlighted), which gives
the feature a name, and describes in broad strokes what is required. User stories are
typically written on 4x6 cards.

 Development team estimates how much effort each story will take, and how much effort

the team can produce in a given time interval (i.e. the iteration).

 Business then decides which stories to implement in what order, as well as when and how

often to produce production releases of the system.

2. Small releases: Start with the smallest useful feature set. Release early and often, adding a

few features each time.

3. System metaphor: Each project has an organising metaphor, which provides an easy to

remember naming convention.

4. Simple design: Always use the simplest possible design that gets the job done. The

requirements will change tomorrow, so only do what's needed to meet today's requirements.

5. Continuous testing: Before programmers add a feature, they write a test for it. Tests in XP

come in two basic flavours.

 Unit tests are automated tests written by the developers to test functionality as they write
it. Each unit test typically tests only a single class, or a small cluster of classes. Unit tests
are typically written using a unit-testing framework, such as JUnit.

 Customer to test that the overall system is functioning as specified, defines

acceptance tests (aka Functional tests). Acceptance tests typically test the entire
system, or some large chunk of it. When all the acceptance tests pass for a given user
story, that story is considered complete. At the very least, an acceptance test could
consist of a script of user interface actions and expected results that a human can run.
Ideally acceptance tests should be automated using frameworks like Canoo Web test,
Selenium Web test etc.

6. Refactoring: Refactor out any duplicate code generated in a coding session. You can do this

with confidence that you didn't break anything because you have the tests.

7. Pair Programming: All production code is written by two programmers sitting at one machine.

Essentially, all code is reviewed as it is written.

8. Collective code ownership: No single person "owns" a module. Any developer is expected to

be able to work on any part of codebase at any time.

9. Continuous integration: All changes are integrated into codebase at least daily. The tests

have to run 100% both before and after integration. You can use tools like Ant, CruiseControl,
and Maven etc to continuously build and integrate your code.

10. 40-Hour Workweek: Programmers go home on time. In crunch mode, up to one week of

overtime is allowed. But multiple consecutive weeks of overtime are treated as a sign that
something is very wrong with the process.

11. On-site customer: Development team has continuous access to a real live customer or

business owner, that is, someone who will actually be using the system. For commercial
software with lots of customers, a customer proxy (usually the product manager, Business

How would you go about…?

165

Analyst etc) is used instead.

12. Coding standards: Everyone codes to the same standards. Ideally, you shouldn't be able to

tell by looking at it, which developer on the team has touched a specific piece of code.

A typical extreme programming project will have:

• All the programmers in a room together usually sitting around a large table.
• Fixed number of iterations where each iteration takes 1-3 weeks. At the beginning of each

iteration get together with the customer.
• Pair-programming.
• Writing test cases first (i.e. TDD).
• Delivery of a functional system at the end of 1-3 week iteration.

Have you used agile
(i.e. Lightweight)
software development
methodologies?

Agile (i.e. lightweight) software development process is gaining popularity and momentum
across organizations. Several methodologies fit under this agile development methodology banner.
All these methodologies share many characteristics like iterative and incremental development,
test driven development (i.e. TDD), stand up meetings to improve communication, automatic
testing, build and continuous integration of code etc. Among all the agile methodologies XP is
the one which has got the most attention. Different companies use different flavours of agile
methodologies by using different combinations of methodologies (e.g. primarily XP with other
methodologies like Scrum, FDD, TDD etc). Refer Q136 in Enterprise section.

Q 11: How would you go about applying the design patterns in your Java/J2EE application?
A 11: It is really worth reading books and articles on design patterns. It is sometimes hard to remember the design
patterns, which you do not use regularly. So if you do not know a particular design pattern you can always honestly say
that you have not used it and subsequently suggest that you can explain another design pattern, which you have used
recently or more often. It is always challenging to decide, which design pattern to use when? How do you improve your
design pattern skills? Practice, practice, practice. I have listed some of the design patterns below with scenarios and
examples:

Note: To keep it simple, System.out.println(…) is used. In real practice, use logging frameworks like log4j. Also package constructs are
not shown. In real practice, each class should be stored in their relevant packages like com.items etc. Feel free to try these code
samples by typing them into a Java editor of your choice and run the main class Shopping. Also constants should be declared in a
typesafe manner as shown below:

/**
 * use typesafe enum pattern as shown below if you are using below JDK 1.5 or use “enum” if you are using JDK 1.5
 */
public class ItemType {
 private final String name;

 public static final ItemType Book = new ItemType("book");
 public static final ItemType CD = new ItemType("cd");
 public static final ItemType COSMETICS = new ItemType("cosmetics");
 public static final ItemType CD_IMPORTED = new ItemType("cd_imported");

 private ItemType(String name) {this.name = name;}
 public String toString() {return name;}
 //add compareTo(), readResolve() methods etc as required ...
}

Scenario: A company named XYZ Retail is in the business of selling Books, CDs and Cosmetics. Books are sales tax
exempt and CDs and Cosmetics have a sales tax of 10%. CDs can be imported and attracts an import tax of 5%. Write a
shopping basket program, which will calculate extended price (qty * (unitprice + tax)) inclusive of tax for each item in the
basket, total taxes and grand total.

Solution: Sample code for the items (i.e. Goods) sold by XYZ Retail. Let’s define an Item interface to follow the design
principle of code to an interface not to an implementation. CO

public interface Item {
 public static final int TYPE_BOOK = 1;
 public static final int TYPE_CD = 2;
 public static final int TYPE_COSMETICS = 3;
 public static final int TYPE_CD_IMPORTED = 4;

 public double getExtendedTax();

How would you go about…?

166

+getExtendedTax() : double
+getExtendedTaxPrice() : double
+isTaxed() : boolean
+isImported() : boolean

-qty : int
-price : double
-tax : Tax

<<abstract>>
Goods

-isTaxed : boolean
-isImported : boolean

CD
-isTaxed : boolean
-isImported : boolean

Book
-isTaxed : boolean
-isImported : boolean

Cosmetics

«interface»
Item

-salesTax : double
-importTax : double

Tax
11

code reuse is achieved through implementation inheritance.

 public double getExtendedTaxPrice() throws ItemException;
 public void setImported(boolean b);
 public String getDescription();
}

The following class Goods cannot be instantiated (since it is abstract). You use this abstract class to achieve code
reuse.

/**
 * abstract parent class, which promotes code reuse for all the subclasses
 * like Book, CD, andCosmetics. implements interface Item to
 * promote design principle code to interface not to an implementation.
 */
public abstract class Goods implements Item {
 //define attributes
 private String description;
 private int qty;
 private double price;
 private Tax tax = new Tax();

 public Goods(String description, int qty, double price) {
 this.description = description;
 this.qty = qty;
 this.price = price;
 }

 protected abstract boolean isTaxed();
 protected abstract boolean isImported();

 public double getExtendedTax() {
 tax.calculate(isTaxed(), isImported(), price);
 return this.tax.getTotalUnitTax() * qty;
 }

 public double getExtendedTaxPrice() throws ItemException {
 if (tax == null) {
 throw new ItemException("Tax should be calculated first:");
 }
 return qty * (this.tax.getTotalUnitTax() + price);
 }

 //getters and setters go here for attributes like description etc
 public String getDescription() {
 return description;
 }

 public String toString() {
 return qty + " " + description + " : ";
 }
}

The Book, CD and Cosmetics classes can be written as shown below:

public class Book extends Goods {
 private boolean isTaxed = false;
 private boolean isImported = false;

 public Book(String description, int qty, double price) {
 super(description, qty, price);
 }

 public boolean isTaxed() {
 return isTaxed;
 }

 public boolean isImported() {
 return isImported;
 }

 public void setImported(boolean b) {
 isImported = b;
 }
}

How would you go about…?

167

public class CD extends Goods {
 private boolean isTaxed = true;
 private boolean isImported = false;

 public CD(String description, int qty, double price) {
 super(description, qty, price);
 }

 public boolean isTaxed() {
 return isTaxed;
 }

 public boolean isImported() {
 return isImported;
 }

 public void setImported(boolean b) {
 isImported = b;
 }
}

public class Cosmetics extends Goods {
 private boolean isTaxed = true;
 private boolean isImported = false;

 public Cosmetics(String description, int qty, double price) {
 super(description, qty, price);
 }

 public boolean isTaxed() {
 return isTaxed;
 }

 public boolean isImported() {
 return isImported;
 }

 public void setImported(boolean b) {
 isImported = b;
 }
}

Alternative solution: Alternatively, instead of using inheritance, we can use object composition to achieve code
reuse as discussed in Q8 in Java section. If you were to use object composition instead of inheritance, you would have
classes Book, CD and Cosmetics implementing the Item interface directly (Goods class would not be required), and make
use of a GoodsHelper class to achieve code reuse through composition.

-isTaxed : boolean
-isImported : boolean
-helper : GoodsHelper

CD
-isTaxed : boolean
-isImported : boolean
-helper : GoodsHelper

Book
-isTaxed : boolean
-isImported : boolean
-helper : GoodsHelper

Cosmetics

«interface»
Item

GoodsHelper

1

1 1

111

interface inheritance where code reuse is achieved through composition [GoodsHelper]. code not shown.

Let’s define a Tax class, which is responsible for calculating the tax. The Tax class is composed in your Goods class,
which makes use of object composition to achieve code reuse.

public class Tax {

How would you go about…?

168

 //stay away from hard coding values. Define constants or read from a “.properties” file
 public static final double SALES_TAX = 0.10; //10%
 public static final double IMPORT_TAX = 0.05; //5%

 private double salesTax = 0.0;
 private double importTax = 0.0;

 public void calculate(boolean isTaxable, boolean isImported, double price) {
 if (isTaxable) {
 salesTax = price * SALES_TAX;
 }
 if (isImported) {
 importTax = price * IMPORT_TAX;
 }
 }

 public double getTotalUnitTax() {
 return this.salesTax + this.importTax;
 }
}

Factory method pattern: To create the items shown above we could use the factory method pattern as described in
Q46 in Java section. We would also implement the factory class as a singleton using the singleton design pattern as
described in Q45 in Java section. The factory method design pattern instantiates a class in a more flexible way than
directly calling the constructor. It loosely couples your calling code from the Items it creates like CD, Book, etc. Let’s look
at why factory method pattern is more flexible:

 Sometimes factory methods have to return a single instance of a class instead of creating new objects each time or

return an instance from a pool of objects.

 Factory methods have to return a subtype of the type requested. It also can request the caller to refer to the returned

object by its interface rather than by its implementation, which enables objects to be created without making their
implementation classes public.

 Sometimes old ways of creating objects can be replaced by new ways of creating the same objects or new classes

can be added using polymorphism without changing any of the existing code which uses these objects. For example:
Say you have a Fruit abstract class with Mango and Orange as its concrete subclasses, later on you can add an
Apple subclass without breaking the code which uses these objects.

The factory method patterns consist of a product class hierarchy and a creator class hierarchy.

/**
 * ItemFactory is responsible for creating Item objects like CD, Book, and Cosmetics etc
 */
public abstract class ItemFactory {
 public abstract Item getItem(int itemType, String description, int qty, double price) throws ItemException;
}

/**
 * GoodsFactory responsible for creating Item objects like CD, Book, and Cosmetics etc
 */
public class GoodsFactory extends ItemFactory {

 protected GoodsFactory() { } //protected so that only ItemFactorySelector within this package can instantiate it to provide a single
 // point of access (i.e singleton).

 /**
 * Factory method, which decides how to create Items.
 *
 * Benefits are: -- loosely-couples the client (i.e ShoppingBasketBuilder class) from Items such as CD, Book, and Cosmetics etc.
 * In future if we need to create a Book item, which is imported, we can easily incorporate this by adding a new
 * item.TYPE_BOOK_IMPORTED and subsequently adding following piece of code as shown:
 *
 * else if(itemType == TYPE_BOOK_IMPORTED){
 * item = new Book(description, qty,price);
 * item.setIsImported(true);
 * }
 *
 * --It is also possible to create an object cache or object pool of our items instead of creating a new instance

How would you go about…?

169

<<abstract>>
Goods

CD Book Cosmetics

«interface»
Item

+getItem()

GoodsFactory

+getItem()

<<abstract>>
ItemFactory

 * every time without making any changes to the calling class.
 *
 * --Java does not support overloaded constructors which take same parameter list. Instead, use several factory methods.
 * E.g. getImportedItem(int itemType, String description, int qty, double price).
 */
 public Item getItem(int itemType, String description, int qty, double price) throws ItemException {
 Item item = null;
 if (itemType == Item.TYPE_BOOK) {
 item = new Book(description, qty, price);
 } else if (itemType == Item.TYPE_CD) {
 item = new CD(description, qty, price);
 } else if (itemType == Item.TYPE_CD_IMPORTED) {
 item = new CD(description, qty, price);
 item.setImported(true);
 } else if (itemType == Item.TYPE_COSMETICS) {
 item = new Cosmetics(description, qty, price);
 } else {
 throw new ItemException("Invalid ItemType=" + itemType);
 }
 return item;
 }
}

Let’s use the abstract factory pattern to create an ItemFactory and the singleton pattern to provide a single point of
access to the ItemFactory returned.

Abstract factory pattern: This pattern is one level of abstraction higher than the factory method pattern because you
have an abstract factory (or factory interface) and have multiple concrete factories. Abstract factory pattern usually has a
specific method for each concrete type being returned (e.g. createCircle(), createSquare() etc). Alternatively you can have
a single method e.g. createShape(…).

Singleton pattern: Ensures that a class has only one instance and provides a global point of access to it (Refer Q45 in
Java section). E.g. a DataSource should have only a single instance where it will supply multiple connections from its
single DataSource pool.

/**
 * Abstract factory class which creates a singleton ItemFactory dynamically based on factory name supplied.
 * Benefits of singleton: -- single instance of the ItemFactory -- single point of access (global access within the JVM and the class loader)
 */
public class ItemFactorySelector {
 private static ItemFactory objectFactorySingleInstance = null;
 private static final String FACTORY_NAME = "com.item.GoodsFactory";

 public static ItemFactory getItemFactory() {
 try {
 if (objectFactorySingleInstance == null) {
 //Dynamically instantiate factory and factory name can also be read from a properties file.
 //in future if we need a CachedGoodsFactory which caches Items to improve memory usage then
 //we can modify the FACTORY_NAME to "com.item.CachedGoodsFactory" or conditionally select one of many factories.
 Class klassFactory = Class.forName(FACTORY_NAME);
 objectFactorySingleInstance = (ItemFactory) klassFactory.newInstance();
 }
 }
 catch (ClassNotFoundException cnf) {
 throw new RuntimeException("Cannot create the ItemFactory: " + cnf.getMessage());
 }catch (IllegalAccessException iae) {
 throw new RuntimeException("Cannot create the ItemFactory: " + iae.getMessage());
 }catch (InstantiationException ie) {
 throw new RuntimeException("Cannot create the ItemFactory: " + ie.getMessage());
 }
 return objectFactorySingleInstance;
 }
}

Now we should build a more complex shopping basket object step-by-step, which is responsible for building a basket with
items like CD, Book etc and calculating total tax for the items in the basket. The builder design pattern is used to define
the interface ItemBuilder and the concrete class, which implements this interface, is named ShoppingBasketBuilder.

Builder pattern: The subtle difference between the builder pattern and the factory pattern is that in builder pattern, the
user is given the choice to create the type of object he/she wants but the construction process is the same. But

How would you go about…?

170

+buildBasket()
+calculateTotalTax()
+calculateTotal()
+printExtendedTax()
+getItemIterator()

ItemBuilder

+buildBasket()
+calculateTotalTax()
+calculateTotal()
+printExtendedTax()
+getItemIterator()

-listItems : List
ShoppingBasketBuilder aProduct : Item

1

*

+getItem()
+getInstance()

GoodsFactory

+getItem()

ItemFactory
«call»

aProduct:Item

with the factory method pattern the factory decides how to create one of several possible classes based on data
provided to it.

…//package & import statements

public interface ItemBuilder {
 public void buildBasket(int itemType, String description, int qty, double unit_price) throws ItemException;
 public double calculateTotalTax() throws ItemException;
 public double calculateTotal() throws ItemException;
 public void printExtendedTaxedPrice() throws ItemException;
 public Iterator getIterator();
}

…//package & import statements

/**
 * Builder pattern: To simplify complex object creation by defining a class whose purpose is to build instances of another class.
 * There is a subtle difference between a builder pattern and the factory pattern is that in builder pattern, the user is given
 * the choice to create the type of object he/she wants but the construction process is the same. But with the factory method
 * pattern the factory decides how to create one of several possible classes based on data provided to it.
 */
public class ShoppingBasketBuilder implements ItemBuilder {

 private List listItems = null;

 private void addItem(Item item) {
 if (listItems == null) {
 listItems = new ArrayList(20);
 }
 listItems.add(item);
 }

 /**
 * builds a shopping basket
 */
 public void buildBasket(int itemType, String description, int qty, double unit_price) throws ItemException {
 //get the single instance of GoodsFactory using the singleton pattern
 //no matter how many times you call getInstance() you get access to the same instance.
 ItemFactory factory = ItemFactorySelector.getItemFactory();

 //use factory method pattern to create item objects, based on itemType supplied to it.
 Item item = factory.getItem(itemType, description, qty, unit_price);
 this.addItem(item); //adds the item to the basket
 }

 /**
 * calculates total tax on the items in the built basket
 */
 public double calculateTotalTax() throws ItemException {
 if (listItems == null) {
 throw new ItemException("No items in the basket");
 }
 double totalTax = 0.0;
 Iterator it = listItems.iterator();
 while (it.hasNext()) {
 Item item = (Item) it.next();
 totalTax += item.getExtendedTax();
 }
 return totalTax;
 }

 /**
 * calculates total price on the items in the built basket
 */
 public double calculateTotal() throws ItemException {
 if (listItems == null) {
 throw new ItemException("No items in the basket");
 }
 double total = 0.0;
 Iterator it = listItems.iterator();
 while (it.hasNext()) {
 Item item = (Item) it.next();
 total += item.getExtendedTaxPrice();

How would you go about…?

171

 }
 return total;
 }

 /**
 * prints individual prices of the items in the built basket
 */
 public void printExtendedTaxedPrice() throws ItemException {
 if (listItems == null) {
 throw new ItemException("No items in the basket");
 }
 double totalTax = 0.0;
 Iterator it = listItems.iterator();
 while (it.hasNext()) {
 Item item = (Item) it.next();
 System.out.println(item + "" + item.getExtendedTaxPrice());
 }
 }

 public Iterator getIterator() {
 return listItems.iterator();
 }
}

Finally, the calling-code, which makes use of our shopping basket builder pattern to build the shopping basket step-by-
step and also calculates the taxes and the grand total for the items in the shopping basket.

…//package & import statements

public class Shopping {
 /**
 * Class with main(String[] args) method which initially gets loaded by the
 * class loader. Subsequent classes are loaded as they are referenced in the program.
 */
 public static void main(String[] args) throws ItemException {
 process();
 }

 public static void process() throws ItemException {
 //------creational patterns: singleton, factory method and builder design patterns----------------
 System.out.println("----create a shopping basket with items ---");
 //Shopping basket using the builder pattern
 ItemBuilder builder = new ShoppingBasketBuilder();
 //build basket of items using a builder pattern
 builder.buildBasket(Item.TYPE_BOOK, "Book - IT", 1, 12.00);
 builder.buildBasket(Item.TYPE_CD, "CD - JAZZ", 1, 15.00);
 builder.buildBasket(Item.TYPE_COSMETICS, "Cosmetics - Lipstick", 1, 1.0);

 //lets print prices and taxes of this built basket
 double totalTax = builder.calculateTotalTax();
 builder.printExtendedTaxedPrice();
 System.out.println("Sales Taxes: " + totalTax);
 System.out.println("Grand Total: " + builder.calculateTotal());
 System.out.println("----- After adding an imported CD to the basket ----");

 //Say now customer decides to buy an additional imported CD
 builder.buildBasket(Item.TYPE_CD_IMPORTED, "CD - JAZZ IMPORTED", 1, 15.00);

 //lets print prices and taxes of this built basket with imported CD added
 totalTax = builder.calculateTotalTax();
 builder.printExtendedTaxedPrice();
 System.out.println("Sales Taxes: " + totalTax);
 System.out.println("Grand Total: " + builder.calculateTotal());
 }
}

Running the above code produces an output of:

----create a shopping basket with items ---
1 Book - IT : 12.0
1 CD - JAZZ : 16.5
1 Cosmetics - Lipstick : 1.1
Sales Taxes: 1.6

How would you go about…?

172

+check() : boolean

LongerThan15

+check() : boolean

StartsWithCD

+check() : boolean

«interface»
CheckStrategy

Grand Total: 29.6

----- After adding an imported CD to the basket ----

1 Book - IT : 12.0
1 CD - JAZZ : 16.5
1 Cosmetics - Lipstick : 1.1
1 CD - JAZZ IMPORTED : 17.25
Sales Taxes: 3.85
Grand Total: 46.85

Scenario: The XYZ Retail wants to evaluate a strategy to determine items with description longer than 15 characters
because it won’t fit in the invoice and items with description starting with “CD” to add piracy warning label.

Solution: You can implement evaluating a strategy to determine items with description longer than 15 characters and
description starting with “CD” applying the strategy design pattern as shown below:

Strategy pattern: The Strategy pattern lets you build software as a loosely coupled collection of interchangeable parts, in
contrast to a monolithic, tightly coupled system. Loose coupling makes your software much more extensible,
maintainable, and reusable. The main attribute of this pattern is that each strategy encapsulates algorithms i.e. it is not
data based but algorithm based. Refer Q10, Q55 in Java section.

Example: You can draw borders around almost all Swing components, including panels, buttons, lists, and so on. Swing
provides numerous border types for its components: bevel, etched, line, titled, and even compound. JComponent class,
which acts as the base class for all Swing components by implementing functionality common to all Swing components,
draws borders for Swing components, using strategy pattern.

public interface CheckStrategy {
 public boolean check(String word);
}

public class LongerThan15 implements CheckStrategy {
 public static final int LENGTH = 15; //constant

 public boolean check(String description) {
 if (description == null)
 return false;
 else
 return description.length() > LENGTH;
 }
}

public class StartsWithCD implements CheckStrategy {
 public static final String STARTS_WITH = "cd";

 public boolean check(String description) {
 String s = description.toLowerCase();
 if (description == null || description.length() == 0)
 return false;
 else
 return s.startsWith(STARTS_WITH);
 }
}

Scenario: The XYZ retail has decided to count the number of items, which satisfy the above strategies.

Solution: You can apply the decorator design pattern around your strategy design pattern. Refer Q20 in Java section
for the decorator design pattern used in java.io.*. The decorator acts as a wrapper around the CheckStrategy objects
where by call the check(…) method on the CheckStrategy object and if it returns true then increment the counter. The
decorator design pattern can be used to provide additional functionality to an object of some kind. The key to a decorator
is that a decorator "wraps" the object decorated and looks to a client exactly the same as the object wrapped. This means
that the decorator implements the same interface as the object it decorates.

Decorator design pattern: You can think of a decorator as a shell around the object decorated. The decorator catches
any message that a client sends to the object instead. The decorator may apply some action and then pass the message
it received on to the decorated object. That object probably returns a value to the decorator which may again apply an
action to that result, finally sending the (perhaps-modified) result to the original client. To the client the decorator is
invisible. It just sent a message and got a result. However the decorator had two chances to enhance the result returned.

How would you go about…?

173

+check() : boolean

LongerThan15

+check() : boolean

StartsWithCD

+check() : boolean

«interface»
CheckStrategy

+check() : boolean

CountDecorator

1

*

A decorator object’s interface must conform to the
interface of the component it decorates

There is a subtle difference between the decorator pattern and the proxy
pattern is that, the main intent of the decorator pattern is to enhance the
functionality of the target object whereas the main intent of the proxy pattern
is to control access to the target object.

public class CountDecorator implements CheckStrategy {

 private CheckStrategy cs = null;
 private int count = 0;

 public CountDecorator(CheckStrategy cs) {
 this.cs = cs;
 }

 public boolean check(String description) {
 boolean isFound = cs.check(description);
 if (isFound)
 this.count++;
 return isFound;
 }

 public int count() {
 return this.count;
 }

 public void reset() {
 this.count = 0;
 }
}

Now, let’s see the calling class Shopping:

//…. package & import statements

public class Shopping {
 //...

 public static void process() throws ItemException {
 ...
 Iterator it = builder.getIterator();
 boolean bol = false;
 CheckStrategy strategy = null;

 it = builder.getIterator();
 //for starting with CD
 strategy = new StartsWithCD();
 strategy = new CountDecorator(strategy);
 while (it.hasNext()) {
 Item item = (Item) it.next();
 bol = strategy.check(item.getDescription());
 System.out.println("\n" + item.getDescription() + " --> " + bol);
 }

 System.out.println("No of descriptions starts with CD -->" + ((CountDecorator) strategy).count());

 it = builder.getIterator();
 //for starting with CD
 strategy = new LongerThan15();
 strategy = new CountDecorator(strategy);
 while (it.hasNext()) {
 Item item = (Item) it.next();
 bol = strategy.check(item.getDescription());
 System.out.println("\n" + item.getDescription() + " --> " + bol);
 }
 System.out.println("No of descriptions longer than 15 characters -->" + ((CountDecorator) strategy).count());
 }
}

Running the above code produces an output of:

----count item description starting with 'cd' or longer than 15 characters ---
-------------------- description satarting with cd ----------------------------
Book - IT --> false
CD - JAZZ --> true
Cosmetics - Lipstick --> false
CD - JAZZ IMPORTED --> true
No of descriptions starts with CD -->2
------------------- description longer than 15 characters -----------------------

How would you go about…?

174

Book - IT --> false
CD - JAZZ --> false
Cosmetics - Lipstick --> true
CD - JAZZ IMPORTED --> true
No of descriptions longer than 15 characters -->2

Scenario: So far so good, for illustration purpose if you need to adapt the strategy class to the CountDecorator class so
that you do not have to explicitly cast your strategy classes to CountDecorator as shown in bold arrow in the class
Shopping. We can overcome this by slightly rearranging the classes. The class CountDecorator has two additional
methods count() and reset(). If you only just add these methods to the interface CheckStrategy then the classes
LongerThan15 and StartsWithCD should provide an implementation for these two methods. These two methods make no
sense in these two classes.

Solution: So, to overcome this you can introduce an adapter class named CheckStrategyAdapter, which just provides a
bare minimum default implementation.

public interface CheckStrategy {
 public boolean check(String word);
 public int count();
 public void reset();
}

/**
 * This is an adapter class which provides default implementations to be extended not to be used and facilitates its subclasses to be
 * adapted to each other. Throws an unchecked exception to indicate improper use.
 */

public class CheckStrategyAdapter implements CheckStrategy {
 public boolean check(String word) {
 throw new RuntimeException("Improper use of CheckStrategyAdapter class method check(String word)");
 }

 public int count() {
 throw new RuntimeException("Improper use of CheckStrategyAdapter class method count()");
 }

 public void reset() {
 throw new RuntimeException("Improper use of CheckStrategyAdapter class method reset()");
 }
}

public class LongerThan15 extends CheckStrategyAdapter {
 public static final int LENGTH = 15;

 public boolean check(String description) {
 if (description == null)
 return false;
 else
 return description.length() > LENGTH;
 }
}

public class StartsWithCD extends CheckStrategyAdapter {
 public static final String STARTS_WITH = "cd";

 public boolean check(String description) {
 String s = description.toLowerCase();
 if (description == null || description.length() == 0)
 return false;
 else
 return s.startsWith(STARTS_WITH);
 }
}

public class CountDecorator extends CheckStrategyAdapter {

 private CheckStrategy cs = null;
 private int count = 0;

 public CountDecorator(CheckStrategy cs) {
 this.cs = cs;
 }

How would you go about…?

175

+check() : boolean
+count() : int
+reset()

«interface»
CheckStrategy

+check() : boolean
+count() : int
+reset()

CheckStrategyAdapter +check() : boolean

LongerThan15

+check() : boolean

StartsWuthCD

Adapter provides default implementation, so that it can be extended to provide specific implementation.

+check() : boolean
+count() : int
+reset()

CountDecorator

1

1

 public boolean check(String description) {
 boolean isFound = cs.check(description);
 if (isFound)
 this.count++;
 return isFound;
 }

 public int count() {
 return this.count;
 }

 public void reset() {
 this.count = 0;
 }
}

Now, let’s see the revised calling class Shopping:

//...package & import statements

public class Shopping {
 //......
 public static void process() throws ItemException {

 //--------------------------Strategy and decorator design pattern----------------------------------
 System.out.println("----count item description starting with 'cd'or longer than 15 characters ---");
 Iterator it = builder.getIterator();
 boolean bol = false;
 CheckStrategy strategy = null;
 System.out.println("-------------------- description satarting with cd ----------------------------");
 it = builder.getIterator();
 //for starting with CD
 strategy = new StartsWithCD();
 strategy = new CountDecorator(strategy);
 while (it.hasNext()) {
 Item item = (Item) it.next();
 bol = strategy.check(item.getDescription());
 System.out.println(item.getDescription() + " --> " + bol);
 }

 System.out.println("No of descriptions starts with CD -->" + strategy.count());

 System.out.println("------------------- description longer than 15 characters -----------------------");
 it = builder.getIterator();
 //for starting with CD
 strategy = new LongerThan15();
 strategy = new CountDecorator(strategy);
 while (it.hasNext()) {
 Item item = (Item) it.next();
 bol = strategy.check(item.getDescription());
 System.out.println(item.getDescription() + " --> " + bol);
 }
 System.out.println("No of descriptions longer than 15 characters -->" + strategy.count());
 }
}

The output is:

----count item description starting with 'cd'or longer than 15 characters ---
-------------------- description satarting with cd ----------------------------
Book - IT --> false
CD - JAZZ --> true
Cosmetics - Lipstick --> false
CD - JAZZ IMPORTED --> true
No of descriptions starts with CD -->2

------------------- description longer than 15 characters -----------------------

Book - IT --> false
CD - JAZZ --> false
Cosmetics - Lipstick --> true
CD - JAZZ IMPORTED --> true

How would you go about…?

176

+visit(CD cd)()
+visit(Book book)()
+visit(Cosmetics cosmetics()

GoodsLabellingVisitor

+visit(CD cd)()
+visit(Book book)()
+visit(Cosmetics cosmetics)()

«interface»
ItemVisitor

<<abstract>>
Goods

+accept(ItemVisitor visitor)()

CD

+accept(ItemVisitor visitor)()

Book

+accept(ItemVisitor visitor)()

Cosmetics

+accept(ItemVisitor visitor)()

«interface»
Item

No of descriptions longer than 15 characters -->2

Scenario: The XYZ Retail also requires a piece of code, which performs different operations depending on the type of
item. If the item is an instance of CD then you call a method to print its catalog number. If the item is an instance of
Cosmetics then you call a related but different method to print its colour code. If the item is an instance of Book then you
call a separate method to print its ISBN number. One way of implementing this is using the Java constructs instanceof
and explicit type casting as shown below:

it = builder.getIterator();

while(it.hasNext();) {
 String name = null;
 Item item = (Item)iter.next();

 if(item instanceof CD) {
 ((CD) item). markWithCatalogNumber();
 } else if (item instanceof Cosmetics) {
 ((Cosmetics) item). markWithColourCode ();
 } else if (item instanceof Book) {
 ((Book) item). markWithISBNNumber();
 }
}

Solution: The manipulation of a collection of polymorphic objects with the constructs typecasts and instanceof as
shown above can get messy and unmaintainable with large elseif constructs and these constructs in frequently accessed
methods/ loops can adversely affect performance. You can apply the visitor design pattern to avoid using these typecast
and “instanceof” constructs as shown below:

Visitor pattern: The visitor pattern makes adding new operations easy and all the related operations are localized in a
visitor. The visitor pattern allows you to manipulate a collection of polymorphic objects without the messy and
unmaintainable typecasts and instanceof operations. Visitor pattern allows you to add new operations, which affect a
class hierarchy without having to change any of the classes in the hierarchy. For example we can add a
GoodsDebugVisitor class to have the visitor just print out some debug information about each item visited etc. In fact
you can write any number of visitor classes for the Goods hierarchy e.g. GoodsLabellingVisitor, GoodsXXXXVisitor
etc.

public interface Item {
 //...
 public void accept(ItemVisitor visitor);
}

public interface ItemVisitor {
 public void visit (CD cd);
 public void visit (Cosmetics cosmetics);
 public void visit (Book book);
}

/**
 * visitor class which calls different methods depending
* on type of item.
 */
public class GoodsLabellingVisitor implements ItemVisitor {

 public void visit(CD cd) {
 markWithCatalogNumber(cd);
 }

 public void visit(Cosmetics cosmetics) {
 markWithColorNumber(cosmetics);
 }

 public void visit(Book book) {
 markWithISBNNumber(book);
 }

 private void markWithCatalogNumber(CD cd) {
 System.out.println("Catalog number for : " + cd.getDescription());
 }

 private void markWithColorNumber(Cosmetics cosmetics) {

How would you go about…?

177

 System.out.println("Color number for : " + cosmetics.getDescription());
 }

 public void markWithISBNNumber(Book book) {
 System.out.println("ISBN number for : " + book.getDescription());
 }
}

public class CD extends Goods {
 //...
 public void accept(ItemVisitor visitor) {
 visitor.visit(this);
 }
}

public class Book extends Goods {
 //...
 public void accept(ItemVisitor visitor) {
 visitor.visit(this);
 }
}

public class Cosmetics extends Goods {
 //...
 public void accept(ItemVisitor visitor) {
 visitor.visit(this);
 }
}

Now, let’s see the calling code or class Shopping:

//... package and import statements

public class Shopping {

 public static void process() throws ItemException {

 //visitor pattern example, no messy instanceof and typecast constructs
 it = builder.getIterator();
 ItemVisitor visitor = new GoodsLabellingVisitor ();
 while (it.hasNext()) {
 Item item = (Item) it.next();
 item.accept(visitor);
 }
 }
}

The output is:

---- markXXXX(): avoid huge if else statements, instanceof & type casts --------
ISBN number for : Book - IT
Catalog number for : CD - JAZZ
Color number for : Cosmetics - Lipstick
Catalog number for : CD - JAZZ IMPORTED

Scenario: The XYZ Retail would like to have a functionality to iterate through every second or third item in the basket to
randomly collect some statistics on price.

Solution: This can be implemented by applying the iterator design pattern.

Iterator pattern: Provides a way to access the elements of an aggregate object without exposing its underlying
implementation.

//… package and import statements

public interface ItemBuilder {
 //..
 public com.item.Iterator getItemIterator();
}

package com.item;

How would you go about…?

178

+curren tItem ()()
+nextItem ()
+prev iousItem ()
+ firs tItem ()
+ lastItem ()

« in te rface»
Ite ra to r

+curren tItem ()
+nextItem ()
+prev iousItem ()
+ firs tItem ()
+ lastItem ()

Item sIte ra to r

+ge tItem Ite ra to r()

S h o p p in g B asketB u ild er

+ge tItem Ite ra to r()

« in te rface»
Item B u ild er

public interface Iterator {
 public Item nextItem();
 public Item previousItem();
 public Item currentItem();
 public Item firstItem();
 public Item lastItem();
 public boolean isDone();
 public void setStep(int step);
}

//… package and import statements

public class ShoppingBasketBuilder implements ItemBuilder {

 private List listItems = null;

 public Iterator getIterator() {
 return listItems.iterator();
 }

 public com.item.Iterator getItemIterator() {
 return new ItemsIterator();
 }

 /**
 * inner class which iterates over basket of items
 */
 class ItemsIterator implements com.item.Iterator {
 private int current = 0;

 private int step = 1;

 public Item nextItem() {
 Item item = null;
 current += step;
 if (!isDone()) {
 item = (Item) listItems.get(current);
 }
 return item;
 }

 public Item previousItem() {
 Item item = null;
 current -= step;
 if (!isDone()) {
 item = (Item) listItems.get(current);
 }
 return item;
 }

 public Item firstItem() {
 current = 0;
 return (Item) listItems.get(current);
 }

 public Item lastItem() {
 current = listItems.size() - 1;
 return (Item) listItems.get(current);
 }

 public boolean isDone() {
 return current >= listItems.size() ? true : false;
 }

 public Item currentItem() {
 if (!isDone()) {
 return (Item) listItems.get(current);
 } else {
 return null;
 }
 }

How would you go about…?

179

+prepareItemForRetail()
+addToStock()
+applyBarcode()
+markRetailPrice()

<<abstract>>
Goods

+addToStock()
+applyBarcode()
+markRetailPrice()

CD

+addToStock()
+applyBarcode()
+markRetailPrice()

Book

+addToStock()
+applyBarcode()
+markRetailPrice()

Cosmetics

addToStock() --> abstract
applyBarcode --> abstract
markRetailPrice --> abstract

 public void setStep(int step) {
 this.step = step;
 }
 }
}

Now, let’s see the calling code Shopping:

//… package & import statements

public class Shopping {
 //..

 public static void process() throws ItemException {
 //Iterator pattern example, inner implementations of ShopingBasketBuilder is protected.
 com.item.Iterator itemIterator = builder.getItemIterator();

 //say we want to traverse through every second item in the basket
 itemIterator.setStep(2);
 Item item = null;
 for (item = itemIterator.firstItem(); !itemIterator.isDone(); item = itemIterator.nextItem()) {
 System.out.println("nextItem: " + item.getDescription() + " ====> " + item.getExtendedTaxPrice());
 }

 item = itemIterator.lastItem();
 System.out.println("lastItem: " + item.getDescription() + " ====> " + item.getExtendedTaxPrice());

 item = itemIterator.previousItem();
 System.out.println("previousItem : " + item.getDescription() + "====>" + item.getExtendedTaxPrice());
 }
}

The output is:

 --------------- steps through every 2nd item in the basket -----------------------
 nextItem: Book - IT ====> 12.0
 nextItem: Cosmetics - Lipstick ====> 1.1
 lastItem: CD - JAZZ IMPORTED ====> 17.25
 previousItem : CD - JAZZ====>16.5

Scenario: The XYZ Retail buys the items in bulk from warehouses and sells them in their retail stores. All the items sold
need to be prepared for retail prior to stacking in the shelves for trade. The preparation involves 3 steps for all types of
items, i.e. adding the items to stock in the database, applying barcode to each item and finally marking retail price on the
item. The preparation process is common involving 3 steps but each of these individual steps is specific to type of item
i.e. Book, CD, and Cosmetics.

Solution: The above functionality can be implemented applying the template method design pattern as shown below:

Template method pattern: When you have a sequence of steps to be processed within a method and you want to defer
some of the steps to its subclass then you can use a template method pattern. So the template method lets the subclass
to redefine some of the steps.

Example Good example of this is the process() method in the Struts RequestProcessor class, which executes a
sequence of processXXXX(…) methods allowing the subclass to override some of the methods when required. Refer
Q110 in Enterprise section.

//...
public abstract class Goods implements Item {
 //...

 /**
 * The template method
 */
 public void prepareItemForRetai() {
 addToStock();
 applyBarcode();
 markRetailPrice();
 }

 public abstract void addToStock();

How would you go about…?

180

 public abstract void applyBarcode();
 public abstract void markRetailPrice();

}

//..
public class Book extends Goods {
 //..

 //following methods gets called by the template method

 public void addToStock() {
 //database call logic to store the book in stock table.
 System.out.println("Book added to stock : " + this.getDescription());
 }

 public void applyBarcode() {
 //logic to print and apply the barcode to book.
 System.out.println("Bar code applied to book : " + this.getDescription());
 }

 public void markRetailPrice() {
 //logic to read retail price from the book table and apply the retail price.
 System.out.println("Mark retail price for the book : " + this.getDescription());
 }
}

//...
public class CD extends Goods {
 //..
 //following methods gets called by the template method

 public void addToStock() {
 //database call logic to store the cd in stock table.
 System.out.println("CD added to stock : " + this.getDescription());
 }

 public void applyBarcode() {
 //logic to print and apply the barcode to cd.
 System.out.println("Bar code applied to cd : " + this.getDescription());
 }

 public void markRetailPrice() {
 //logic to read retail price from the cd table and apply the retail price.
 System.out.println("Mark retail price for the cd : " + this.getDescription());
 }
}

//...
public class Cosmetics extends Goods {
 //...

 public void addToStock() {
 //database call logic to store the cosmetic in stock table.
 System.out.println("Cosmetic added to stock : " + this.getDescription());
 }

 public void applyBarcode() {
 //logic to print and apply the barcode to cosmetic.
 System.out.println("Bar code applied to cosmetic : " + this.getDescription());
 }

 public void markRetailPrice() {
 //logic to read retail price from the cosmetic table and apply the retail price.
 System.out.println("Mark retail price for the cosmetic : " + this.getDescription());
 }
}

Now, let’s see the calling code Shopping:

//...
public class Shopping {
 //...

How would you go about…?

181

+addEmployee()
+removeEmployee()
+hasSubordinates()
+getSalaries()

<<abstract>>
Employee

+addEmployee()
+removeEmployee()
+hasSubordinates()

Staff

+addEmployee()
+removeEmployee()
+hasSubordinates()
+getSalaries()

Manager

1

*

Leaf
Composite

 public static void process() throws ItemException {
 //...

 Item item = null;
 for (item = itemIterator.firstItem(); !itemIterator.isDone(); item = itemIterator.nextItem()) {
 item.prepareItemForRetai();
 System.out.println("-----------------------------------");
 }
 }
}

The output is:

 ------------------- prepareItemForRetail() -------------------------------
 Book added to stock : Book - IT
 Bar code applied to book : Book - IT
 Mark retail price for the book : Book - IT

Scenario: The employees of XYZ Retail are at various positions. In a hierarchy, the general manager has subordinates,
and also the sales manager has subordinates. The retail sales staffs have no subordinates and they report to their
immediate manager. The company needs functionality to calculate salary at different levels of the hierarchy.

Solution: You can apply the composite design pattern to represent the XYZ Retail company employee hierarchy.

Composite design pattern: The composite design pattern composes objects into tree structures where individual
objects like sales staff and composite objects like managers are handled uniformly. Refer Q52 in Java section or Q25 in
Enterprise section.

/**
 * Base employee class
 */
public abstract class Employee {
 private String name;
 private double salary;

 public Employee(String name, double salary) {
 this.name = name;
 this.salary = salary;
 }

 public String getName() {
 return name;
 }

 public double getSalaries() {
 return salary;
 }

 public abstract boolean addEmployee(Employee emp);
 public abstract boolean removeEmployee(Employee emp);
 protected abstract boolean hasSubordinates();
}

// package & import statements

/**
 * This is the Employee composite class having subordinates.
 */
public class Manager extends Employee {

 List subordinates = null;

 public Manager(String name, double salary) {
 super(name, salary);
 }

 public boolean addEmployee(Employee emp) {
 if (subordinates == null) {
 subordinates = new ArrayList(10);
 }

How would you go about…?

182

 return subordinates.add(emp);
 }

 public boolean removeEmployee(Employee emp) {
 if (subordinates == null) {
 subordinates = new ArrayList(10);
 }
 return subordinates.remove(emp);
 }

 /**
 * Recursive method call to calculate the sum of salary of a manager and his subordinates, which means sum of salary of a manager
 * on whom this method was invoked and any employees who themselves will have any subordinates and so on.
 */
 public double getSalaries() {
 double sum = super.getSalaries(); //this one's salary

 if (this.hasSubordinates()) {
 for (int i = 0; i < subordinates.size(); i++) {
 sum += ((Employee) subordinates.get(i)).getSalaries();
 }
 }
 return sum;
 }

 public boolean hasSubordinates() {
 boolean hasSubOrdinates = false;
 if (subordinates != null && subordinates.size() > 0) {
 hasSubOrdinates = true;
 }
 return hasSubOrdinates;
 }
}

/**
 * This is the leaf staff employee object. staff do not have any subordinates.
 */
public class Staff extends Employee {

 public Staff(String name, double salary) {
 super(name, salary);
 }

 public boolean addEmployee(Employee emp) {
 throw new RuntimeException("Improper use of Staff class");
 }

 public boolean removeEmployee(Employee emp) {
 throw new RuntimeException("Improper use of Staff class");
 }

 protected boolean hasSubordinates() {
 return false;
 }
}

Now, let’s see the calling code Shopping:

//...
public class Shopping {
 //.....

 public static void process() throws ItemException {
 //....

 System.out.println("--------------------- Employee hierachy & getSalaries() recursively -------------");
 //Employee hierachy

 Employee generalManager = new Manager("John Smith", 100000.00);

 Employee salesManger = new Manager("Peter Rodgers", 80000.00);
 Employee logisticsManger = new Manager("Graham anthony", 90000.00);

How would you go about…?

183

B a n k S t o c k C o n t r o l W h o le S a le r

W ith o u t f a c a d e

P u r c h a s e E v a l u a t i o n F a c a d e

B a n k S t o c k C o n t r o l W h o l e s a l e r

W i t h f a c a d e

 Employee staffSales1 = new Staff("Lisa john", 40000.00);
 Employee staffSales2 = new Staff("Pamela watson", 50000.00);
 salesManger.addEmployee(staffSales1);
 salesManger.addEmployee(staffSales2);

 Employee logisticsTeamLead = new Manager("Cooma kumar", 70000.00);

 Employee staffLogistics1 = new Staff("Ben Sampson", 60000.00);
 Employee staffLogistics2 = new Staff("Vincent Chou", 20000.00);
 logisticsTeamLead.addEmployee(staffLogistics1);
 logisticsTeamLead.addEmployee(staffLogistics2);

 logisticsManger.addEmployee(logisticsTeamLead);

 generalManager.addEmployee(salesManger);
 generalManager.addEmployee(logisticsManger);

 System.out.println(staffSales1.getName() + "-->" + staffSales1.getSalaries());
 System.out.println(staffSales2.getName() + "-->" + staffSales2.getSalaries());

 System.out.println("Logistics dept " + " --> " + logisticsManger.getSalaries());

 System.out.println("General Manager " + " --> " + generalManager.getSalaries());
 }
}

The output is:

--------------------- Employee hierachy & getSalaries() recursively -------------
Lisa john-->40000.0
Pamela watson-->50000.0
Logistics dept --> 240000.0
General Manager --> 510000.0

Scenario: The purchasing staffs (aka logistics staff) of the XYZ Retail Company need to interact with other
subsystems in order to place purchase orders. They need to communicate with their stock control department to
determine the stock levels, also need to communicate with their wholesale supplier to determine availability of stock and
finally with their bank to determine availability of sufficient funds to make a purchase.

Solution: You can apply the façade design pattern to implement the above scenario.

Façade pattern: The façade pattern provides an interface to large subsystems of classes. A common design goal is to
minmize the communication and dependencies between subsystems. One way to achieve this goal is to introduce a
façade object that provides a single, simplified interface.

public class StockControl {
 public boolean isBelowReorderpoint(Item item) {
 //logic to evaluate stock level for item
 return true;
 }
}

public class Bank {
 public boolean hasSufficientFunds() {
 //logic to evaluate if we have sufficient savings goes here
 return true;
 }
}

public class WholeSaler {
 public boolean hasSufficientStock(Item item) {
 //logic to evaluate if the wholesaler has enough stock goes here
 return true;
 }
}

/**
 * This is the facade class
 */
public class PurchaseEvaluation {

 private StockControl stockControl = new StockControl();

How would you go about…?

184

 private WholeSaler wholeSaler = new WholeSaler();
 private Bank bank = new Bank();

 public boolean shouldWePlaceOrder(Item item) {
 if (!stockControl.isBelowReorderpoint(item)) {
 return false;
 }

 if (!wholeSaler.hasSufficientStock(item)) {
 return false;
 }

 if (!bank.hasSufficientFunds()) {
 return false;
 }

 return true;
 }
}

Now, let’s see the calling code or class Shopping:

//....

public class Shopping {
 //.......

 public static void process() throws ItemException {

 //....

 //----------------------facade design pattern --------------------------------
 System.out.println("--------------------shouldWePlaceOrder----------------------------") ;
 PurchaseEvaluation purchaseEval = new PurchaseEvaluation();
 boolean shouldWePlaceOrder = purchaseEval.shouldWePlaceOrder(item);
 System.out.println("shouldWePlaceOrder=" + shouldWePlaceOrder);
 }
}

The output is:

--------------------shouldWePlaceOrder()----------------------------
shouldWePlaceOrder=true

Scenario: The purchasing deprtment also requires functionality where, when the stock control system is updated, all the
registered departmental systems like logistics and sales should be notified of the change.

Solution: This can be achieved by applying the observer design pattern as shown below:

Observer pattern: defines a one-to-many dependency between objects so that when one object changes state, all its
dependents are notified and updated automatically. (aka publish-subscribe pattern)

0

5 0

1 0 0

1 s t

Q t r

3 r d

Q t r

E a s t

W e s t

N o r t h

1 s t Q t r

2 n d Q t r

3 r d Q t r

4 t h Q t r

S u b jec t

O b servers

1 st Q tr = 1 0% , 2 n d Q tr= 20 % , 3 Q tr = 60% , 4 th Q tr = 1 0%

register regist
er

Noti
fy

ch
an

ge
Notify

change

/**
 * This is an observer (aka subscriber) interface. This gets notified through its update method.
 */
public interface Department {
 public void update(Item item, int qty);
}

How would you go about…?

185

+update()

LogisticsDepartment

+addSubscribers()
+removeSubscribers()
+notify()

XYZStockControl

+update()

«interface»
Department

+addSubscribers()
+removeSubscribers()
+notify()

«interface»
StockControl

+update()

SalesDepartment

-observers

-subject

Subject (aka publisher)

Observer (aka Subscriber)

public class LogisticsDepartment implements Department {
 public void update(Item item, int qty) {
 //logic to update department's stock goes here
 System.out.println("Logistics has updated its stock for " + item.getDescription() + " with qty=" + qty);
 }
}

public class SalesDepartment implements Department {
 public void update(Item item, int qty) {
 //logic to update department's stock goes here
 System.out.println("Sales has updated its stock for " + item.getDescription() + " with qty=" + qty);
 }
}

/**
 * Subject (publisher) class: when stock is updated, notifies all the
 * subscribers.
 */
public interface StockControl {
 public void notify(Item item, int qty);
 public void updateStock(Item item, int qty) ;
 public boolean addSubscribers(Department dept);
 public boolean removeSubscribers(Department dept);
}

//… package & import statements

**
 * publisher (observable) class: when stock is updated
 * notifies all the subscribers.
 */
public class XYZStockControl implements StockControl{

 List listSubscribers = new ArrayList(10);

 //...

 public boolean addSubscribers(Department dept) {
 return listSubscribers.add(dept);
 }

 public boolean removeSubscribers(Department dept) {
 return listSubscribers.remove(dept);
 }

 /**
 * writes updated stock qty into databases
 */
 public void updateStock(Item item, int qty) {
 //logic to update an item's stock goes here
 notify(item, qty); //notify subscribers that with the updated stock info.
 }

 public void notify(Item item, int qty) {
 int noOfsubscribers = listSubscribers.size();
 for (int i = 0; i < noOfsubscribers; i++) {
 Department dept = (Department) listSubscribers.get(i);
 dept.update(item, qty);
 }
 }
}

Now, let’s see the calling code or class Shopping:

// package & import statements

public class Shopping {
 //...............
 public static void process() throws ItemException {
 //.........

 //----------------------observer design pattern---

How would you go about…?

186

 System.out.println("--------------------notify stock update----------------------------");
 Department deptLogistics = new LogisticsDepartment(); //observer/subscriber
 Department salesLogistics = new SalesDepartment(); //observer/subscriber

 StockControl stockControl = new XYZStockControl();//observable/publisher
 //let's register subscribers with the publisher
 stockControl.addSubscribers(deptLogistics);
 stockControl.addSubscribers(salesLogistics);

 //let's update the stock value of the publisher
 for (item = itemIterator.firstItem(); !itemIterator.isDone(); item = itemIterator.nextItem()) {
 if (item instanceof CD) {
 stockControl.updateStock(item, 25);
 } else if (item instanceof Book){
 stockControl.updateStock(item, 40);
 }
 else {
 stockControl.updateStock(item, 50);
 }
 }
 }
}

The output is:

--------------------notify stock update----------------------------
Logistics has updated its stock for Book - IT with qty=40
Sales has updated its stock for Book - IT with qty=40
Logistics has updated its stock for CD - JAZZ with qty=25
Sales has updated its stock for CD - JAZZ with qty=25
Logistics has updated its stock for Cosmetics - Lipstick with qty=50
Sales has updated its stock for Cosmetics - Lipstick with qty=50
Logistics has updated its stock for CD - JAZZ IMPORTED with qty=25
Sales has updated its stock for CD - JAZZ IMPORTED with qty=25

Scenario: The stock control staffs require a simplified calculator, which enable them to add and subtract stock counted
and also enable them to undo and redo their operations. This calculator will assist them with faster processing of stock
counting operations.

Solution: This can be achieved by applying the command design pattern as shown below:

Command pattern: The Command pattern is an object behavioural pattern that allows you to achieve complete
decoupling between the sender and the receiver. (A sender is an object that invokes an operation, and a receiver is an
object that receives the request to execute a certain operation. With decoupling, the sender has no knowledge of the
Receiver's interface.) The term request here refers to the command that is to be executed. The Command pattern also
allows you to vary when and how a request is fulfilled. At times it is necessary to issue requests to objects without
knowing anything about the operation being requested or the receiver of the request. In procedural languages, this type of
communication is accomplished via a call-back: a function that is registered somewhere to be called at a later point.
Commands are the object-oriented equivalent of call-backs and encapsulate the call-back function.

T e s t
(c l i e n t a p p l i c a t i o n)

+ d r a w ()

D r a w I n v o k e r
(I n v o k e r)

+ e x e c u t e ()

« i n t e r f a c e »
C o m m a n d

+ e x e c u t e ()

C i r c l e C o m m a n d

+ e x e c u t e ()

S q u a r e C o m m a n d

+ d r a w ()

C i r c l e

+ d r a w ()

S q u a r e

1 *

C o m m a n d p a t t e r n

1 . i n v o k e t h e r e c e i v e r

2 . i n v o k e t h e
c o m m a n d a n d
p a s s t h e r e c i e v e r
a s a n a r g u m e n t

3 . i n v o k e t h e i n v o k e r
a n d p a s s t h e
c o m m a n d a s a n
a r g u m e n t

How would you go about…?

187

+compute()
+redo()
+undo()

Staff

<<abstract>>
Employee

+execute()
+unexecute()

CalculatorCommand

+execute()
+unexecute()

«interface»
Command

+calculate()

Calculator

1 *Invoker

Receiver

Command, which decouples
the invoker from the receiver.

// package & import statements

/**
 * Invoker
 */
public class Staff extends Employee {

 private Calculator calc = new Calculator();
 private List listCommands = new ArrayList(15);
 private int current = 0;

 public Staff(String name) {
 super(name);
 }

 //...
 /**
 * make use of command.
 */
 public void compute(char operator, int operand) {
 Command command = new CalculatorCommand(calc, operator, operand);//initialise the calculator
 command.execute();
 //add commands to the list so that undo operation can be performed
 listCommands.add(command);
 current++;
 }

 /**
 * perform redo operations
 */
 public void redo(int noOfLevels) {
 int noOfCommands = listCommands.size();
 for (int i = 0; i < noOfLevels; i++) {
 if (current < noOfCommands) {
 ((Command) listCommands.get(current++)).execute();
 }
 }
 }

 /**
 * perform undo operations
 */
 public void undo(int noOfLevels) {
 for (int i = 0; i < noOfLevels; i++) {
 if (current > 0) {
 ((Command) listCommands.get(--current)).unexecute();
 }
 }
 }
}

**
 * actual receiver of the command who performs calculation
 */
public class Calculator {
 private int total = 0;

 /**
 * calculates.
 */
 public void calculate(char operator, int operand) {
 switch (operator) {
 case '+':
 total += operand;
 break;
 case '-':
 total -= operand;
 break;
 }

 System.out.println("Total = " + total);
 }

How would you go about…?

188

}

/**
 * command interface
 */
public interface Command {
 public void execute();
 public void unexecute();
}

/**
 * calculator command, which decouples the receiver Calculator from the invoker staff
 */

public class CalculatorCommand implements Command {
 private Calculator calc = null;
 private char operator;
 private int operand;

 public CalculatorCommand(Calculator calc, char operator, int operand) {
 this.calc = calc;
 this.operator = operator;
 this.operand = operand;
 }

 public void execute() {
 calc.calculate(operator, operand);
 }

 public void unexecute() {
 calc.calculate(undoOperand(operator), operand);
 }

 private char undoOperand(char operator) {
 char undoOperator = ' ';
 switch (operator) {
 case '+':
 undoOperator = '-';
 break;

 case '-':
 undoOperator = '+';
 break;
 }
 return undoOperator;
 }
}

Now, let’s see the calling code or class Shopping:

//..............
public class Shopping {
 //...........
 public static void process() throws ItemException {

 //------------------------------------command design pattern--
 System.out.println("---------------Calculator with redo & undo operations---------------------------");
 Staff stockControlStaff = new Staff("Vincent Chou");

 stockControlStaff.compute('+',10);//10
 stockControlStaff.compute('-',5);//5
 stockControlStaff.compute('+',10);//15
 stockControlStaff.compute('-',2);//13

 //lets try our undo operations
 System.out.println("---------------undo operation : 1 level---------------------------");
 stockControlStaff.undo(1);
 System.out.println("---------------undo operation :2 levels---------------------------");
 stockControlStaff.undo(2);

 //lets try our redo operations
 System.out.println("---------------redo operation : 2 levels---------------------------");
 stockControlStaff.redo(2);

How would you go about…?

189

+getPrice()
+setPrice()

«interface»
PriceList

+getPrice()
+setPrice()

XYZPriceList

 System.out.println("---------------redo operation : 1 level---------------------------");
 stockControlStaff.redo(1);
 }
}

The output is:

--------------Calculator with redo & undo operations---------------------------
Total = 10
Total = 5
Total = 15
Total = 13
---------------undo operation : 1 level---------------------------
Total = 15
---------------undo operation :2 levels---------------------------
Total = 5
Total = 10
---------------redo operation : 2 levels---------------------------
Total = 5
Total = 15
---------------redo operation : 1 level---------------------------
Total = 13

Scenario: The XYZ Retail has a 3rd party software component called XYZPriceList, which implements an interface
PriceList. This 3rd party software component is not thread-safe. So far it performed a decent job since only the sales
manager had access to this software component. The XYZ Retail now wants to provide read and write access to all the
managers. The source code is not available and only the API is available, so modifying the existing component is not
viable. This will cause a dirty read problem if two managers try to concurrently access this component. For example, if the
sales manager tries to access an item’s price while the logistics manger is modifying the price (say modification takes 1
second), then the sales manager will be reading the wrong value. Let’s look at this with a code sample:

public interface PriceList {
 public double getPrice(int itemId) ;
 public void setPrice(int itemId,double newPrice) ;
}

//…
public class XYZPriceList implements PriceList{

 private static final Map mapPrices = new HashMap(30,.075f);
 public static PriceList singleInstance = new XYZPriceList();//only one instance

 /**
 * static initializer block
 */
 static {
 //only one item is added to keep it simple
 mapPrices.put(new Integer(1), new Double(12.00));//Book - IT
 //... add more items to price list
 }

 public static PriceList getInstance() {
 return singleInstance;
 }

 public double getPrice(int itemId) {
 double price = ((Double)mapPrices.get(new Integer(itemId))).doubleValue();
 System.out.println("The price of the itemId " + itemId + " = "+ price);
 return price;
 }

 public void setPrice(int itemId,double newPrice) {
 System.out.println("wait while mutating price from 12.0 to 15.00");
 try {
 mapPrices.put(new Integer(itemId),new Double(-1));//transient value while updating with a proper value
 Thread.sleep(1000);//assume update/set operation takes 1 second
 mapPrices.put(new Integer(itemId),new Double(newPrice));
 } catch (InterruptedException ie) {}
 }
}

The multi-threaded access class:

How would you go about…?

190

public class PriceListUser implements Runnable {

 int itemId;
 double price;
 static int count = 0;

 public PriceListUser(int itemId) {
 this.itemId = itemId;
 }

 /**
 * runnable code where multi-threads are executed
 */
 public void run() {
 String name = Thread.currentThread().getName();

 if (name.equals("accessor")) {
 price = XYZPriceList.getInstance().getPrice(itemId); //using 3rd party commponent

 } else if (name.equals("mutator")) {
 XYZPriceList.getInstance().setPrice(itemId, 15.00); //using 3rd party commponent
 }
 }
}

Now, let’s see the calling code or class Shopping:

//....
public class Shopping {
 //....
 public static void process() throws ItemException {
 //..........

 //------------------------------------proxy design pattern------------------------------
 System.out.println("---------------Accessing the price list---------------------------");

 PriceListUser user1 = new PriceListUser(1);//accessing same itemId=1
 PriceListUser user2 = new PriceListUser(1);//accessing same itemId=1

 Thread t1 = new Thread(user1);
 Thread t2 = new Thread(user2);
 Thread t3 = new Thread(user1);

 t1.setName("accessor");//user 1 reads the price
 t2.setName("mutator");//user 2 modifies the price
 t3.setName("accessor");//user 1 reads the price

 t1.start();//accessor user-1 reads before mutator user-2 modifies the price as 12.00
 t2.start();//mutator user-2 sets the price to 15.00
 t3.start();//while the user-2 is setting the price to 15.00 user-1 reads again and gets the price as 12.00
 //user-2 gets the wrong price i.e gets 12.0 again instead of 15.00
 }
}

The output is:

---------------Accessing the price list---------------------------
The price of the itemId 1 = 12.0
wait while mutating price from 12.0 to 15.00
The price of the itemId 1 = -1.0
 OR
---------------Accessing the price list---------------------------
wait while mutating price from 12.0 to 15.00
The price of the itemId 1 = -1.0
The price of the itemId 1 = -1.0

Problem: You get one of the two outputs shown above depending on how the threads initialized by the operating system.
The first value of 12.0 is okay and the second value of 12.0 again is a dirty read because the value should have been
modified to 15.0 by the user-2. So the user-1 reading the value for the second time should get the value of 15.0 after it
has been modified.

How would you go about…?

191

-rea lSub ject

+ge tP rice()
+se tP rice()

« in terface»
P riceL ist

+ge tP rice()
+se tP rice()

X Y ZP riceL ist

+ge tP rice()
+setP rice()

X Y ZP riceL istP roxy

rea l sub jectP roxy (aka su rrogate)

Solution: This threading issue and inability to modify the existing component can be solved by applying the proxy
design pattern. You will be writing a proxy class, which will apply the locking for the entries in the XYZPriceList. This
proxy class internally will be making use of the XYZPriceList in a synchronized fashion as shown below:

Proxy pattern: Provides a surrogate or placeholder for another object to control access to it. Provide a surrogate or
placeholder for another object to control access to it. Proxy object acts as an intermediary between the client and the
target object. The proxy object has the same interface as the target object. The proxy object holds reference to the target
object. There are different types of proxies:

 Remote Proxy: provides a reference to an object, which resides in a separate address space. e.g. EJB, RMI, CORBA

etc (RMI stubs acts as a proxy for the skeleton objects.)

 Virtual Proxy: Allows the creation of memory intensive objects on demand. The target object will not be created until

it is really needed.

 Access Proxy: Provides different clients with different access rights to the target object.

Example In Hibernate framework (Refer Q15 - Q16 in Emerging Technologies/Frameworks section) lazy loading of
persistent objects are facilitated by virtual proxy pattern. Say you have a Department object, which has a collection of
Employee objects. Let’s say that Employee objects are lazy loaded. If you make a call department.getEmployees() then
Hibernate will load only the employeeIDs and the version numbers of the Employee objects, thus saving loading of
individual objects until later. So what you really have is a collection of proxies not the real objects. The reason being, if
you have hundreds of employees for a particular department then chances are good that you will only deal with only a few
of them. So, why unnecessarily instantiate all the Employee objects? This can be a big performance issue in some
situations. So when you make a call on a particular employee i.e. employee.getName() then the proxy loads up the real
object from the database.

P ro xy p a tte rn

T es t
(c lie n t ap p lic a tio n)

+ req ue st()

R ea lS u b jec t

+ req ues t()

P ro xy

+ re qu est()

« in te rfa ce»
S u b je c t

aC lien t
sub jec t aP ro xy

rea lS ub jec t aR ea lS u b jec t

/**
 * synchronized proxy class for XYZPriceList
 */
public class XYZPriceListProxy implements PriceList {
 //assume that we only have two items in the pricelist
 Integer[] locks = { new Integer(1), new Integer(2) };//locks for each item in the price list

 public static PriceList singleInstance = new XYZPriceListProxy();//single instance of XYZPriceListProxy

 PriceList realPriceList = XYZPriceList.getInstance(); // real object

 public static PriceList getInstance() {
 return singleInstance;
 }

 public double getPrice(int itemId) {
 synchronized (locks[itemId]) {
 return realPriceList.getPrice(itemId);
 }
 }

 public void setPrice(int itemId, double newPrice) {

How would you go about…?

192

 synchronized (locks[itemId]) {
 realPriceList.setPrice(itemId, newPrice);
 }
 }
}

You should make a slight modification to the PriceListUser class as shown below in bold.

public class PriceListUser implements Runnable {

 int itemId;
 double price;
 static int count = 0;

 public PriceListUser(int itemId) {
 this.itemId = itemId;
 }

 /**
 * runnable code where multi-threads are executed
 */
 public void run() {
 String name = Thread.currentThread().getName();

 if (name.equals("accessor")) {
 price = XYZPriceListProxy.getInstance().getPrice(itemId);

 } else if (name.equals("mutator")) {
 XYZPriceListProxy.getInstance().setPrice(itemId, 15.00);
 }
 }
}

Running the same calling code Shopping will render the following correct results by preventing dirty reads:

---------------Accessing the price list---------------------------
The price of the itemId 1 = 12.0
wait while mutating price from 12.0 to 15.00
The price of the itemId 1 = 15.0
 OR
---------------Accessing the price list---------------------------
wait while mutating price from 12.0 to 15.00
The price of the itemId 1 = 15.0
The price of the itemId 1 = 15.0

What is a dynamic proxy? Dynamic proxies were introduced in J2SE 1.3, and provide an alternate dynamic mechanism
for implementing many common design patterns like Façade, Bridge, Decorator, Proxy (remote proxy and virtual proxy),
and Adapter. While all of these patterns can be written using ordinary classes instead of dynamic proxies, in many
situations dynamic proxies are more compact and can eliminate the need for a lot of handwritten classes. Dynamic
proxies are reflection-based and allow you to intercept method calls so that you can interpose additional behaviour
between a class caller and its callee. Dynamic proxies are not always appropriate because this code simplification comes
at a performance cost due to reflection overhead. Dynamic proxies illustrate the basics of Aspect Oriented Programming
(AOP) which complements your Object Oriented Programming. Refer Q03, Q04 and Q05 in Emerging
Technologies/Frameworks section.

Where can you use dynamic proxies? Dynamic proxies can be used to add crosscutting concerns like logging,
performance metrics, memory logging, retry semantics, test stubs, caching etc. Let’s look at an example:

InvocationHandler interface is the heart of a proxy mechanism.

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;

/**
 * Handles logging and invocation of target method
 */
public class LoggingHandler implements InvocationHandler {

 protected Object actual;

 public LoggingHandler(Object actual) {

How would you go about…?

193

 this.actual = actual;
 }

 public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
 try {
 System.out.println(">>>>>>start executing method: " + method.getName());
 Object result = method.invoke(actual, args);
 return result;
 } catch (InvocationTargetException ite) {
 throw new RuntimeException(ite.getMessage());
 } finally {
 System.out.println("<<<<<<finished executing method: " + method.getName());
 }
 }
}

Let’s define the actual interface and the implementation class which adds up two integers.

public interface Calculator {
 public int add(int i1, int i2);
}

public class CalculatorImpl implements Calculator {

 public int add(int i1, int i2) {
 final int sum = i1 + i2;
 System.out.println("Sum is : " + sum);
 return sum;
 }
}

Factory method class CalculatorFactory, which uses the dynamic proxies when logging, is required.

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Proxy;

/**
 * singleton factory
 */
public class CalculatorFactory {

 private static CalculatorFactory singleInstance = null;
 private CalculatorFactory() {}

 public static CalculatorFactory getInstance() {
 if (singleInstance == null) {
 singleInstance = new CalculatorFactory();
 }
 return singleInstance;
 }

 public Calculator getCalculator(boolean withLogging) {

 Calculator c = new CalculatorImpl();

 //use dynamic proxy if logging is required, which logs your method calls
 if (withLogging) {
 //invoke the handler, which logs and invokes the target method on the Calculator
 InvocationHandler handler = new LoggingHandler(c);

 //create a proxy
 c = (Calculator) Proxy.newProxyInstance(c.getClass().getClassLoader(), c.getClass().getInterfaces(), handler);
 }

 return c;
 }
}

Finally the test class:

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Proxy;

How would you go about…?

194

public class TestProxy {

 public static void main(String[] args) {
 System.out.println("==============Without dynamic proxy=============");
 Calculator calc = CalculatorFactory.getInstance().getCalculator(false);
 calc.add(3, 2);

 System.out.println("===============With dynamic proxy================");
 calc = CalculatorFactory.getInstance().getCalculator(true);
 calc.add(3, 2);
 }
}

The output is:
==============Without dynamic proxy=============
Sum is : 5
===============With dynamic proxy================
>>>>>>start executing method: add
Sum is : 5
<<<<<<finished executing method: add

Adapter pattern Sometimes a library cannot be used because its interface is not compatible with the interface
required by an application. Also it is possible that we may not have the source code for the
library interface. Even if we had the source code, it is not a good idea to change the source
code of the library for each domain specific application. This is where you can use an adapter
design pattern. Adapter lets classes work together that could not otherwise because of
incompatible interfaces. This pattern is also known as a wrapper.

Bridge pattern Refer Q41 in Enterprise section.
Chain of responsibility pattern Refer Q22 in Enterprise section
Pattern Description
J2EE Patterns
MVC pattern Refer Q3 in Enterprise section

Refer Q54 in Java section
Front controller Refer Q24 in Enterprise sectio
Composite View, View Helper,
Dispatcher View and Service to
Worker

Refer Q25 in Enterprise section

Business delegate Refer Q83 in Enterprise section
Session façade Refer Q84 in Enterprise section
Value Object Refer Q85 in Enterprise section
Fast lane reader Refer Q86 in Enterprise section
Service locator Refer Q87 in Enterprise section

Useful links:

 http://www.allapplabs.com/Java_design_patterns/creational_patterns.htm
 http://www.patterndepot.com/put/8/JavaPatterns.htm
 http://www.javaworld.com/columns/jw-Java-design-patterns-index.shtml
 http://www.onjava.com/pub/a/onjava/2002/01/16/patterns.html?page=1
 http://www.corej2eepatterns.com/index.htm
 http://www.theserverside.com/books/wiley/EJBDesignPatterns/index.tss
 http://www.martinfowler.com/eaaCatalog/

Q 12: How would you go about determining the enterprise security requirements for your Java/J2EE application?
A 12: It really pays to understand basic security terminology and J2EE security features. Let’s look at them:

Some of the key security concepts are:

 Authentication
 Authorisation ((J2EE declarative & programmatic)
 Data Integrity
 Confidentiality and privacy
 Non-repudiation and auditing

Terminology Description
Authentication Authentication is basically an identification process. Do I know who you are?

How would you go about…?

195

Terminology used for J2EE security:

Principal: An entity that can be identified and authenticated. For example an initiator of the request like
user etc).

Principal name: Identity of a principal like user id etc.

Credential: Information like password or certificate, which can authenticate a principal.

Subject: A set of principals and their credentials associated with a thread of execution.

Authentication: The process by which a server verifies the identity presented by a user through
username/userid and password or certificate etc. For example the username and password supplied by the
user can be validated against an LDAP server or a database server to verify he is whom he claims to be.

Authentication methods:

 Basic/Digest authentication: Browser specific and password is encoded using Base-64 encoding.
Digest is similar to basic but protects the password through encryption. This is a simple challenge-
response scheme where the client is challenged for a user id and password. The Internet is divided
into realms. A realm is supposed to have one user repository so a combination of user id and
password is unique to that realm. The user challenge has the name of the realm so that users with
different user ids and password on different systems know which one to apply. Lets look at a HTTP
user challenge format

WWW-Authenticate: Basic realm=”realm_name”

The user-agent (ie Web browser) returns the following HTTP header field

Authorization: Basic userid:password

With Basic authentication the user id and password string is base64 encoded. The purpose of
base64 is to avoid sending possibly unprintable or control characters over an interface that expects
text characters. It does not provide any security because the clear text can be readily restored.

With Digest authentication the server challenges the user with a “nonce” which is an unencrypted
random value. The user responds with a checksum (typically MD5 hash) of the user id, password, the
nonce and some other data. The server creates the same checksum from the user parameters
available in the user registry. If both the checksums match then it is assumed that the user knows the
correct password.

 Form-based authentication: Most Web applications use the form-based authentication since it

allows applications to customise the authentication interface. Uses base64 encoding which can
expose username and password unless all connections are over SSL. (Since this is the most common
let us look at in greater detail together ie authentication & authorisation under Authorisation).

 Certificate based authentication: Uses PKI and SSL. This is by far the most secured authentication

method. A user must provide x509 certificate to authenticate with the server.

Authorisation Authorization is the process by which a program determines whether a given identity is permitted to access
a resource such as a file or an application component. Now that you are authenticated, I know who you
are? But Are you allowed to access the resource or component you are requesting?

Terminology used for J2EE security:

Authorization: Process of determining what type of access (if any) the security policy allows to a resource
by a principal.

Security role: A logical grouping of users who share a level of access permissions.

Security domain: A scope that defines where a set of security policies are maintained and enforced. Also
known as security policy domain or realm.

J2EE uses the concept of security roles for both declarative and programmatic access controls. This is
different from the traditional model, which is permission-based (for example UNIX file system security
where resources like files are associated with a user or group who might have permission to read the file
but not execute).

Let us look at some differences between

Permission-based authorization: Typically the permission-based security both users and resources are
defined in a security database and the association of user and groups with the resources takes place
through Access Control Lists (ACL). The maintenance of these registry and ACLs requires a security

How would you go about…?

196

administrator.

Role based authorization: In J2EE role based model, the users and groups of users are still stored in a
user registry. A mapping must also be provided between users and groups to the security constraints.
This can exist in a registry or J2EE applications themselves have their own role based security
constraints defined through deployment descriptors like web.xml, ejb-jar.xml, and/or application.xml. So
the applications themselves do not have to be defined by a security administrator.

Now lets look at role based authorization in a bit more detail:

J2EE has both a declarative and programmatic way of protecting individual method of each component
(Web or EJB) by specifying which security role can execute it.

 Refer Q23 in Enterprise section.
 Refer Q81 in Enterprise section
 Also refer Q7 in Enterprise section for the deployment descriptors where <security-role> are defined.

Let’s look at the commonly used form-based authentication and authorisation in a bit more detail.

STEP:1 The web.xml defines the type of authentication mechanism

<login-config>
 <auth-method>FORM</auth-method>
 <realm-name>FBA</realm-name>
 <form-login-config>
 <form-login-page>myLogon</form-login-page>
 <form-error-page>myError</form-error-page>
 </form-login-config>
</login-config>

STEP: 2 The user creates a form that must contain fields for username, password etc as shown below.
The names should be as shown for fields in bold:

<form method=”POST” action=”j_security_check”>
<input type=”text” name=”j_username”>
<input type=”text” name=”j_password”>
</form>

STEP: 3 Set up a security realm to be used by the container. Since LDAP or database provide flexibility
and ease of maintenance, Web containers have support for different types of security realms like LDAP,
Database etc.

For example Tomcat Web container uses the server.xml to set up the database as the security realm.

<realm classname="org.apache.catalina.realm.JDBCRealm" debug="99"
 drivername="org.gjt.mm.mysql.Driver"
 connectionurl="jdbc:mysql://localhost/tomcatusers?user=test;password=test"
 usertable="users" usernamecol="user_name" usercredcol="user_pass"
 userroletable="user_roles" rolenamecol="role_name"/>

You have to create necessary tables and columns created in the database.

STEP: 4 Set up the security constraints in the web.xml for authorisation.

<security-constraint>
 <web-resource-collection>
 <web-resource-name>PrivateAndSensitive</web-resource-name>
 <url-pattern>/private/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>executive</role-name>
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>

The Web containers perform the following steps to implement security when a protected Web
resource is accessed:

Step 1: Determine whether the user has been authenticated.

Step 2: If the user has not been already authenticated, request the user to provide security credentials by
redirecting the user to the login page defined in the web.xml as per Step-1 & Step-2 described above.

How would you go about…?

197

Step 3: Validate the user credentials against the security realm set up for the container.

Step 4: Determine whether the authenticated user is authorised to access the Web resource defined in
the deployment descriptor web.xml. Web containers enforce authorization on a page level. For fine grained
control programmatic security can be employed using

request.getRemoteUser(), request.isUserInRole(), request.getUserPrincipal() etc

Note: The Web containers can also propagate the authentication information to EJB containers.

Data integrity Data integrity helps to make sure if something is intact and not tampered with during transmission.

Checksums: Simply add up the bytes within file or request message. If the checksums match the integrity
is maintained. The weakness with this approach is that some times junks can be added to make sums
equal like

ABCDE == EDCBA

Cryptography hashes: This uses a mathematical function to create small result called message digest
from the input message. Difficult to create false positives. Common hash functions are MD5, SHA etc.

Data [e.g. Name is Peter] MD5 iterative hash function Digest [e.g. f31d120d3]

It is not possible to change the message digest back to its original data. You can only compare two
message digests i.e. one came with the client’s message and the other is recomputed by the server from
sent message. If both the message digests are equal then the message is intact and has not been
tampered with.

Confidentiality
and Privacy

The confidentiality and privacy can be accomplished through encryption. Encryption can be:

Symmetric or private-key: This is based on a single key. This requires the sender and the receiver to
share the same key. Both must have the key. The sender encrypts his message with a private key and the
receiver decrypts the message with his own private key. This system is not suitable for large number of
users because it requires a key for every pair of individuals who need to communicate privately. As the
number of participant increases then number of private keys required also increases. So a company which
wants to talk to 1000 of its customers should have 1000 private keys. Also the private keys need to be
transmitted to all the participants, which has the vulnerability to theft. The advantages of the symmetric
encryption are its computational efficiency and its security.

Asymmetric or public-key infrastructure (PKI): This is based on a pair of mathematically related keys.
One is a public key, which is distributed to all the users, and the other key is a private key, which is kept
secretly on the server. So this requires only two keys to talk to 1000 customers. This is also called
Asymmetric encryption because the message encrypted by public key can only be decrypted by the
private key and the message encrypted by the private key can only be decrypted by the public key.

In a public key encryption anybody can create a key pair and publish the public key. So we need to verify
the owner of the public key is who you think it is. So the creator of this false public key can intercept the
messages intended for some one else and decrypt it. To protect this public key systems provide
mechanisms for validating the public keys using digital signatures and digital certificates.

Digital signature: A digital signature is a stamp on the data, which is unique and very difficult to forge. A
digital signature has 2 steps and establishes 2 things from the security perspective.

STEP 1: To sign a document means hashing software (e.g. MD5, SHA) will crunch the data into just a few
lines by the process called ’hashing’. These few lines are called message digest. It is not possible to
change the message digest back to its original data. Same as what we saw above in cryptography
hashes. This establishes whether the message has been modified between the time it was digitally
signed and sent and time it was received by the recipient.

STEP 2: Computing the digest can verify the integrity of the message but does not stop from some one
intercepting it or verifying the identity of the signer. This is where encryption comes into picture. Signing
the message with the private key will be useful for proving that the message must have come from the user
who claims to have signed it. The second step in creating a digital signature involves encrypting the
digest code created in STEP 1 with the sender’s private key.

When the message is received by the recipient the following steps take place:

1. Recipient recomputes the digest code for the message.
2. Recipient decrypts the signature by using the sender’s public key. This will yield the original digest

code of the sender.
3. Compare the original and the recomputed digest codes. If they match then the message is both intact

and signed by the user who claims to have signed it (i.e. authentic).

How would you go about…?

198

Digital Certificates: A certificate represents an organisation in an official digital form. This is equivalent to
an electronic identity card which serves the purpose of

 Identifying the owner of the certificate. This is done with authenticating the owner through trusted 3rd
parties called the certificate authorities (CA) e.g. Verisign etc. The CA digitally signs these certificates.
When the user presents the certificate the recipient validates it by using the digital signature.

 Distributing the owner’s public key to his users (or recipients of the message).

The server certificates let visitors to your website exchange personal information like credit card number
etc with the server with the confidence that they are communicating with intended site and not the rogue
site impersonating the intended site. Server certificates are must for e-commerce sites. Personal
certificates let you authenticate a visitor's identity and restrict access to specified content to particular
visitors. Personal certificates are ideal for business-to business communication where offering partners and
suppliers special access to your website.

A certificate includes details about the owner of the certificate and the issuing CA. A certificate includes:

 Distinguished name (DN) of the owner, which is a unique identifier. You need the following for the DN:

• Country Name (C)
• State (ST)
• Locality (L)
• Organization Name (O)
• Organization Unit (OU)
• Common Name (CN)
• Email Address.

 Public key of the owner.
 The issue date of the certificate.
 The expiry date of the certificate.
 The distinguished name of the issuing CA.
 The digital signature of the issuing CA.

 Now lets look at the core concept of the certificates:

STEP 1: The owner makes a request to the CA by submitting a certificate request with the above
mentioned details. The certificate request can be generated with tool like OpenSSL REQ, Java keytool etc.
This creates a certreq.perm file, which can be transferred to CA via FTP.

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBJTCB0AIBADBtMQswCQYDVQQGEwJVUzEQMA4GA1UEChs4lBMHQXJpem9uYTEN
A1UEBxMETWVzYTEfMB0GA1UEChMWTWVs3XbnzYSBDb21tdW5pdHkgQ29sbGVnZTE
A1UEAxMTd3d3Lm1jLm1hcmljb3BhLmVkdTBaMA0GCSqGSIb3DQEBAQUAA0kAMEYC
QQDRNU6xslWjG41163gArsj/P108sFmjkjzMuUUFYbmtZX4RFxf/U7cZZdMagz4I
MmY0F9cdpDLTAutULTsZKDcLAgEDoAAwDQYJKoZIhvcNAQEEBQADQQAjIFpTLgfm
BVhc9SQaip5SFNXtzAmhYzvJkt5JJ4X2r7VJYG3J0vauJ5VkjXz9aevJ8dzx37ir
3P4XpZ+NFxK1R=
-----END NEW CERTIFICATE REQUEST-----

STEP 2: The CA takes the owner’s certificate request and creates a message ‘m’ from the request and
signs the message ‘m’ with CA’s private key to create a separate signature ‘sig’. The message ‘m’ and the
signature ‘sig’ form the certificate, which gets sent to the owner.

STEP 3: The owner then distributes both parts of the certificate (message and signature) to his customers
(or recipients) after signing the certificate with owner’s private key.

STEP 4: The recipient of the certificate (i.e. the customer) extracts the certificate with owner’s public key
and subsequently verifies the signature ‘sig’ using CA’s public-key. If the signature proves valid, then the
recipient accepts the public key in the certificate as the owner’s key.

Non-repudiation
and auditing

Proof that the sender actually sent the message. It also prohibits the author of the message from falsely
denying that he sent the message. This is achieved by record keeping the exact time of the message
transmission, the public key used to decrypt the message, and the encrypted message itself. Record
keeping can be complicated but critical for non-repudiation.

Secure Socket
Layer (SSL)

Secure Socket Layer (SSL) uses a combination of symmetric and asymmetric (public-key) encryption to
accomplish confidentiality, integrity, authentication and non-repudiation for Internet communication. In a
nutshell SSL uses public key encryption to confidentially transmit a session key which can be used to
conduct symmetric encryption. SSL uses the public key technology to negotiate a shared session key
between the client and the server. The public key is stored in an X.509 certificate that usually has a digital
signature from a trusted 3rd party like Verisign. Lets look at the handshake sequence where the server and
the client negotiate the cipher suite to be used, establish a shared session key and authenticate server to

How would you go about…?

199

the client and optionally client to the server.

 Client requests a document from a secure server https://www.myapp.com.au).
 The server sends its X.509 certificate to the client with its public key stored in the certificate.
 The client checks whether the certificate has been issued by a CA it trusts.
 The client compares the information in the certificate with the site’s public key and domain name.
 Client tells the server what cipher suites it has available.
 The server picks the strongest mutually available ciphers suite and notifies the client.
 The client generates a session key (symmetric key or private key) and encrypts it using the server’s

public key and sends it to the server.
 The server receives the encrypted session key and decrypts it using its private key.
 The client and server use the session key to encrypt and decrypt the data they send to each other.

Note: Use HTTP post as opposed to HTTP get (sends sensitive information as a query string appended to your
URL) in your web based applications, since it is more secured due to hiding sensitive information from your URL
query string. Your URL query string can be easily tampered with to determine any security holes in your
application.

Q 13: How would you go about describing the open source projects like JUnit (unit testing), Ant (build tool), CVS (version

control system) and log4J (logging tool) which are integral part of most Java/J2EE projects?
A 13: JUnit, ANT and CVS are integral part of most Java/J2EE projects. JUnit for unit testing, ANT for deployment, and

CVS for source control. Let’s look at each, one by one. I will be covering only the key concepts, which can be used
as a reference guide in addition to being handy in interviews.

JUnit

This is a regression testing framework, which is used by developers who write unit tests in Java. Unit testing is relatively
inexpensive and easy way to produce better code faster. Unit testing exercises testing of a very small specific
functionality. To run JUnit you should have JUnit.jar in your classpath.

Unix: CLASSPATH=$CLASSPATH:/usr/Java/packages/junit3.8.1/JUnit.jar
Dos: CLASSPATH=%CLASSPATH%;C:\junit3.8.1/JUnit.jar

JUnit can be coded to run in two different modes as shown below:

Per test mode Per suite setup (more common)
The per test mode will call the setUp() method before executing
every test case and tearDown() method after executing every
test case.

Lets look at an example:

import junit.framework.TestCase;

public class SampleTest extends TestCase {

 Object o = null;

 protected void setUp() {
 System.out.println("running setUp()");
 //Any database access code
 //Any set up code
 o = new Object();
 }

 protected void tearDown() {
 System.out.println("running tearDown()");
 //Any clean up code
 o = null;
 }

 public void testCustomer() {
 System.out.println("running testCustomer()");
 assertEquals(5, 2 + 3);
 assertNotNull("check if it is null", o);
 assertTrue(5 == 5);
 }

 public void testAccount() {

In this mode the setUp() and tearDown() will be executed only
once:

import junit.framework.*;
import junit.extensions.*;

public class SampleTest2 extends TestCase {

Object o = null;

 public void testCustomer() {
 System.out.println("running testCustomer()");
 assertEquals(5, 2 + 3);
 }

 public void testAccount() {
 System.out.println("running testAccount()");
}

 public SampleTest2(String method) {
 super(method);
 }

public static Test suite() {
 TestSuite suite = new TestSuite();

 suite.addTest(new SampleTest2("testCustomer"));
 suite.addTest(new SampleTest2("testAccount"));

 TestSetup wrapper = new TestSetup(suite) {

 protected void setUp() {

How would you go about…?

200

 System.out.println("running testAccount()");
 if (5 < 3)
 fail();
 }

}

as per the above example the execution sequence is as follows:

running setUp()
running testAccount()
running tearDown()
running setUp()
running testCustomer()
running tearDown()

 oneTimeSetUp();
 }

 protected void tearDown() {
 oneTimeTearDown();
 }
};

return wrapper;
}

public static void oneTimeSetUp() {
 System.out.println("running setUp()");
 //runs only once to setup
}
public static void oneTimeTearDown() {
 System.out.println("running tearDown()");
 //runs only once to cleanup
}

as per the above example the execution sequence is as follows:

running setUp()
running testCustomer()
running testAccount()
running tearDown()

How to run JUnit?

Text mode: java –cp <junit.jar path> junit.textui.TestRunner
Graphics mode: java –cp <junit.jar path> junit.swingui.TestRunner

The smallest groupings of test expressions are the methods that you put them in. Whether you use JUnit or not, you
need to put your test expressions into Java methods, so you might as well group the expressions, according to any
criteria you want, into methods. An object that you can run with the JUnit infrastructure is a Test. But you can't just
implement Test and run that object. You can only run specially created instances of TestCase. A TestSuite is just an
object that contains an ordered list of runnable Test objects. TestSuites also implement Test() and are runnable.
TestRunners execute Tests, TestSuites and TestCases.

ANT (Another Niche Tool)

Ant is a tool which helps you build, test, and deploy (Java or other) applications. ANT is a command-line program that
uses a XML file (i.e. build.xml) to describe the build process. The build.xml file describes the various tasks ant has to
complete. ANT is a very powerful, portable, flexible and easy to use tool. Ant has the following command syntax:

ant [ant-options] [target 1] [target 2] [….target n]

Some ant options are:

-help, -h : print list of available ant-options (ie prints this message)
-verbose : be extra verbose
-quiet : be extra quiet
-projecthelp , -p : print project help information
-buildfile <file> : use given build file
-logger <classname> : class which is to perform logging
-D<property=value> : use value for given property
-propertyfile <name> : load all properties from file with –D properties taking precedence.
-keep-going, -k : execute all targets that do not depend on failed targets
… and more

Let’s look at a simple build.xml file:

?xml version="1.0" encoding="UTF-8"?>
<project name="MyProject" default="compile" basedir=".">

 <property name="src" value=".\src\" />

How would you go about…?

201

 <property name="build" value=".\classes\" />

 <target name="init">
 <mkdir dir="${build}" />
 </target>

 <target name="compile" description="compiles the packages" depends="init">
 <javac srcdir="${src}" destdir="${build}" optimize="on" debug="on">
 <classpath>
 <pathelement location="${build}" />
 </classpath>
 </javac>
 </target>

 <target name="clean" description="cleans the build directory">
 <delete dir="${build}" />
 </target>

</project>

We can run the above with one of the following commands

$ ant compile
$ ant clean compile
$ ant –b build.xml compile

Now lets look at some of the key concepts:

Concept Explanation with example
Ant Targets An Ant build file contains one project, which itself contains multiple targets. Each target contains tasks. Targets

can depend on each other, so building one target may cause others to be built first.

From the above build.xml file example

name: Name of the target to run.

description: A target determines whether the target defined as internal or public based on description. If the
description attribute is defined then it is public and otherwise it is internal. In the above example targets compile
and clean are public. The target init is internal. When you run the following command option the public targets
are displayed.

ant -projecthelp

depends: The target “compile” depends on the target “init”. So the target init will be run before target compile is
run.

If: If the given property has been defined then the target will be executed.

<target name=”A” if=”somePropertyName1”>
 <echo message=”I am in target A”>
</target>

unless: If the given property is not defined then the target will be executed.

<target name=”B” unless=”somePropertyName2”>
 <echo message=”I am in target B”>
</target>

Ant delegates work to other targets as follows:

<target name=”build” depends=”prepare”>
 <antcall target=”compile” />
 <antcall target=”jar” />
</target>

Ant tasks Ant task is where real work is done. A task can take any number of attributes. Ant tasks can be categorised as
follows:

 Core tasks: Tasks that are shipped with core distribution like <javac …>, <jar …> etc
 Optional tasks: Tasks that require additional jar files to be executed like <ftp ….> etc
 User defined tasks: Tasks that are to be developed by users by extending Ant framework.

How would you go about…?

202

For example <javac > is a task.

<javac srcdir="${src}" destdir="${build}" optimize="on" debug="on">
 <classpath>
 <pathelement location="${build}" />
 </classpath>
</javac>

Ant data types Ant data types are different to the ones in other programming languages. Lets look at some of the ant data types.

description:

<project default=”deploy” basedir=”.”>
 <description> This is my project</description>
</project>

patternset:

? matches a single character
* matches 0 or more characters
** matches 0 or more directory recursively

<patternset id=”classfile”>
 <include name=”**/*.class” />
 <exclude name=”**/*Test*.class” />
</patternset>

dirset:

<dirset dir=”${build.dir}”>
 <patternset id=”classfile”>
 <include name=”**/classes” />
 <exclude name=”**/*Test*” />
 </patternset>
</dirset>

fileset:

<fileset dir=”${build.dir}”>
 <include name=”**/*.Java” />
 <exclude name=”**/*Test*” />
</fileset>

filelist, filemapper,filterchain,filterreader, selectors, xmlcatalogs etc

Lets look at some
key tasks where:

Ant updates data
from repository.

Carries out unit
tests with JUnit.

Builds a jar file if
JUnit is success.

Email the results
with the help of
Ant loggers and
listeners.

Fetch code updates from CVS:

<target name=”cvsupdate” depends=”prepare”>
 <cvspass cvsroot=”${CVSROOT}” passwd=”${rep.passwd}” />
 <cvs cvsRoot=”${CVSROOT}” command=”update –p -d” failOnError=”true” />
</target>

Run unit tests with JUnit:

<target name=”test” depnds=”compile”>
 <junit failureproperty=”${testsFailed}” >
 <classpath>
 <pathelement path=”${classpath}” />
 <pathelement path=”${build.dir.class}” />
 </classpath>
 <formatter type=”xml”/>
 <test name=”mytests.testall” todir=”${reports.dir}” />
 </junit>
</target>

Creating a jar file:

<target name=”jar” depnds=”test” unless=”testsFailed”>
 <jar destfile=”${build.dir}/${name}.jar” basedir=”${build.dir}” include=”**/*.class” />
</target>

How would you go about…?

203

Email the results with the help of loggers:

Now let’s look at how we can e-mail the run results. Ant has listeners and loggers. A listener is a component
that is alerted to certain events during the life of a build. A logger is built on top of the listener and is the
component that is responsible for logging details about the build. The listeners are alerted to 7 different events
like build started, build finished, target started, target finished, task started, task finshed and message logged.

The loggers are more useful and interesting. You are always using a logger when you run ant (i.e.
DefaultLogger). You can specify the logger as shown below:

ant –logger org.apache.tools.ant.listener.MailLogger

You can also specify other loggers like XmlLogger, Log4Jlistener etc.

The MailLogger logs whatever information comes its way and then sends e-mail. A group of properties must be
set for a MailLogger which can be passed on to ant as a standard command-line Java option <ie –
DmailLogger.mailhost=”blah.com” > or the <property …> statements in the init target. Lets look at some of the
properties to be set:

MailLogger.mailhost
MailLogger.from
MailLogger.failuire.notify whether to send an e-mail on build failure.
MailLogger.success.notify whether to send an e-mail on build success.
MailLogger.fail.to
MailLogger.success.to

Note: Maven is a software project management and comprehension tool, which is gaining popularity. Maven is based on the concept of
project object model (POM), and it can manage a project’s build process, reporting and documentation from a centralized piece of
information. Maven provides a uniform build system where by requiring a single set of Ant build files that can be shared by all projects
using Maven. Maven provides following information about your project: Change logs from your repository information, cross referenced
sources, source metrics, mailing lists, developer lists, dependency lists, unit test reports including coverage etc.

CVS

CVS is a version control or tracking system. It maintains records of files through their development and allows retrieval of
any stored version of a file, and supports production of multiple versions.

cvs [cvs-options] command [command-options-arguments]

CVS allows you to split the development into 2 or more parts called a trunk (MAIN) and a branch. You can create 1 or
more branches. Typically a branch is used for bug fixes and trunk is used for future development. Both the trunk and
branches are stored in the same repository. This allows the change from branch (i.e. bug fixes) to ultimately or
periodically be merged into the main trunk ensuring that all bug fixes get rolled into next release.

Unlike some other version control systems, CVS instead of locking files to prevent conflicts (i.e. when 2 developers
modifying the same file) it simply allows multiple developers to work on the same file. Subsequently with the aid of cvs file
merging feature it allows you to merge all the changes into one file. The benefits of version control systems like CVS
include:

• Any stored revision of a file can be retrieved to be viewed or changed.
• Differences between 2 revisions can be displayed.
• Patches can be created automatically.
• Multiple developers can simultaneously work on the same file.
• Project can be branched into multiple streams for varied tasks and then branches can be merged back into trunk

(aka MAIN).
• Also supports distributed development and can be configured to record commit messages into a bug tracking

system.

Let’s look at some of the key concepts and commands.

Concept Explanation with examples
Building a repository The repository should be built on a partition that is backed up and won’t shut down. The

repositories are stored under ‘cvsroot’ i.e. /var/lib/cvsroot or /cvsroot. The command to set up
the chosen directory as a CVS repository:

cvs –d /var/lib/cvsroot

How would you go about…?

204

Lets look at some command line examples:

$ mkdir /var/lib/cvsroot
$ chgrp team /var/lib/cvsroot
$ chmod g+srwx /var/lib/cvsroot
$ cvs –d /var/lib/cvsroot

Importing projects After creating a repository you can import a project or a related collection of files stored under a
single directory by using the following command:

cvs [-d <repository-path>] import <project_name> <vendor_tag> <related_tag>

Lets look at some command line examples:

$ cd /tmp
$ mkdir ProjectX
$ touch ProjectX/File1.Java
$ touch ProjectX/File2.Java
$ touch ProjectX/File3.Java
$ cd ProjectX
$ cvs –d /var/lib/cvsroot import ProjectX INITIAL start

Creating a sandbox,
checking out and
updating files from cvs
repository into a
sandbox

Copy of the files, which gets checked out by the client from the cvs repository, is called a
sandbox. The user can manipulate the files within the sandbox and when the files have been
modified they can be resubmitted into the repository with the changes. Lets look at how to
create a sandbox (i.e. a client working copy):

cvs –d /var/lib/cvsroot checkout ProjectX

The above command will result in creating a subdirectory called ProjectX under the present
working directory.

Subsequently to keep the sandbox in sync with the repository, an update command can be
executed. The update command checks your checked-out cvs sandbox against the cvs
repository and down loads any changed files into the sandbox from the repository.

cvs update -d

Adding files into cvs
repository from a
sandbox.

To add file from sandbox into cvs repository you should create a file first.

$ touch file3
$ cvs add file3
$ cvs commit

To add directories and files

$ cvs add design plan design/*.rtf plan/*.rtf

Checking file stats and
help

$ cvs [cvs-options] stats [command-option] <filename>
$ cvs –help
$ cvs rlog ProjectX

Removing a file from
the cvs repository.

To remove a file from the repository, first remove the file from the sandbox directory and then
run the cvs command.

$ rm file3
$ cvs remove file3
$ cvs commit

Moving or renaming
files

To move or rename files:

$ mv file1 file101
$ cvs remove file1
$ cvs add file101
$ cvs commit

Releasing a sandbox CVS release should be used before deleting a sandbox. CVS first checks whether there are
any files with uncommitted changes.

How would you go about…?

205

$ cvs release

Tagging files Tagging is a way of marking a group of file revisions as belong together. If you want to look at
all the file revisions belonging to a tag the cvs will use the tag string to locate all the files.

To tag files in the repository

$ cvs –d /var/lib/cvsroot rtag -r HEAD release_1 ProjectX

To tag files in the sandbox

$ cvs tag release_1

Removing tags To remove a tag from sandbox.

$ cvs tag –d release_1 file1

To remove a tag from repository.

$ cvs rtag –d release_1 file1

Retrieving files based
on past revisions
instead of the latest
files.

We have already looked at how to checkout latest code. What if we want to checkout by a
revision?

$ cvs checkout –r Tagname ProjectX

To update by revision

$ cvs update –d -r release_1

Creating branches Branches can be added to the repository tree in order to allow different development paths to
be tried, or to add parallel development of code to different base versions.

CVS TRUNK & BRANCH

2.6.2.1 2.6.2.2

2.5 2.6 2.7

release_1_branch

Trunk

Trunk
Tag: release_1

Tag:
release_1_branch_merge_1

To create a branch from sandbox, you can use

$ cvs update –d -r release_1
$ cvs tag –r release_1 –b release_1_branch

To create a branch from the repository

$ cvs rtag –r release_1 –b release_1_branch

As shown in the diagram it is always a good practice to tag the trunk at the root of branch
before branching. This makes it easier to merge the changes back to trunk later. It is also a

How would you go about…?

206

good practice to tag the branch at the root of the branch prior to merging back to head.

To merge from branch to trunk (HEAD)

cvs update –j branch_base_tag –j branchname

$ cvs update –j release_1 –j release_1_branch

To make subsequent merges from the branch to trunk(HEAD)

$ cvs update –j release_1_branch_merge_1 –j release_1_branch

To merge from trunk to branch

$ cvs update –j release_1_branch_merge_1 –j HEAD

CVS admin task To add binary files like images, documents etc to cvs

$ cvs add -kb image.jpg
$ cvs add -kb acceptance.doc

Log4J

Refer Q126 in Enterprise section.

Q 14: How would you go about describing Web services?
A 14: This book would not be complete without mentioning Web services. Web services provide application-to-

application communication using XML.

What is the difference between a Web (website) and a Web service?
Web (website) Web Service
A Web is a scalable information space
with interconnected resources. A Web
interconnects resources like Web
pages, images, an application, word
document, e-mail etc.

A Web service is a service, which lives on the Web. A Web service posses both the
characteristics of a Web and a service. We know what a Web is; let’s look at what a service
is?

A service is an application that exposes its functionality through an API (Application
Programming Interface). So what is a component you may ask? A service is a component
that can be used remotely through a remote interface either synchronously or asynchronously.
The term service also implies something special about the application design, which is called a
service-oriented architecture (SOA). One of the most important features of SOA is the
separation of interface from implementation. A service exposes its functionality through
interface and interface hides the inner workings of the implementation. The client application
(ie user of the service) only needs to know how to use the interface. The client does not have
to understand actually how the service does its work. For example: There are so many
different models of cars like MAZDA, HONDA, TOYOTA etc using different types of engines,
motors etc but as a user or driver of the car you do not have to be concerned about the
internals. You only need to know how to start the car, use the steering wheel etc, which is the
interface to you.

Usually a service runs on a server, waiting for the client application to call it and ask to do
some work? These services are often run on application servers which manage scalability,
availability, reliability, multi-threading, transactions, security etc.

Designed to be consumed by humans
(ie users, clients, business partners
etc). For example: www.google.com
is a Web search engine that contains
index to more than 8 billion of other
Web pages. The normal interface is
Web browser like Internet Explorer,
which is used by human.

Designed to be consumed by software (i.e. other applications).

For example: Google also provides a Web service interface through the Google API to query
their search engine from an application rather than a browser.
Refer http://www.google.com/apis/ for Google Web API

How would you go about…?

207

Why use Web services when you can use traditional style middleware such as RPC, CORBA, RMI and DCOM?
Traditional middleware Web Services
Tightly coupled connections to the application and
it can break if you make any modification to your
application. Tightly coupled applications are hard to
maintain and less reusable.

Web Services support loosely coupled connections. The interface of the
Web service provides a layer of abstraction between the client and the server.
The loosely coupled applications reduce the cost of maintenance and
increases reusability.

Generally does not support heterogeneity. Web Services present a new form of middleware based on XML and Web.
Web services are language and platform independent. You can develop a
Web service using any language and deploy it on to any platform, from small
device to the largest supercomputer. Web service uses language neutral
protocols such as HTTP and communicates between disparate
applications by passing XML messages to each other via a Web API.

Does not work across Internet. Does work across Internet.

More expensive and hard to use. Less expensive and easier to use.

Serv ic e Reques tor Regis try

Serv ic e Prov ider

Serv ic e Prov ider

W e b se rv ice s o v e rv ie w

UDDI [p
ub lish]

UDDI [publ ish]

WS DL, S OAP [bind]
WSDL, SOAP [bind]

UDDI [f ind]

Let’s look at some of the key terms
Terms Explanation
XML XML provides the way to structure data and XML provides the foundation on which Web services are built.

SOAP SOAP stands for Simple Object Access Protocol. It is an XML based lightweight protocol, which allows

software components and application components to communicate, mostly using HTTP. SOAP sits on top of
the HTTP protocol. SOAP is nothing but XML message based document with pre-defined format. SOAP
is designed to communicate via the Internet in a platform and language neutral manner and allows you to get
around firewalls as well. Lets look at some SOAP messages:

• A SOAP message MUST be encoded using XML
• A SOAP message MUST use the SOAP Envelope namespace
• A SOAP message MUST use the SOAP Encoding namespace
• A SOAP message must NOT contain a DTD reference
• A SOAP message must NOT contain XML Processing Instructions

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Header>
 ...
 ...
</soap:Header>
<soap:Body>
 ...
 ...
 <soap:Fault>

How would you go about…?

208

 ...
 ...
 </soap:Fault>
</soap:Body>
</soap:Envelope>

Let’s look at a SOAP request and a SOAP response:

SOAP Request:

POST /Price HTTP/1.1
Host: www.mysite.com
Content-Type: application/soap+xml; charset=utf-8
Content-Length: 300

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Body>
 <m:GetPrice xmlns:m="http://www.mysite.com/prices">
 <m:Item>PlasmaTV</m:Item>
 </m:GetPrice>
</soap:Body>
</soap:Envelope>

SOAP Response:

HTTP/1.1 200 OK
Content-Type: application/soap; charset=utf-8
Content-Length: 200

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Body>
 <m:GetPriceResponse
 xmlns:m="http://www.mysite.com/prices">
 <m:Price>3500.00</m:Price>
 </m:GetPriceResponse>
</soap:Body>
</soap:Envelope>

Lets look at a HTTP header:

POST /Price HTTP/1.1
Host: www.mysite.com
Content-Type: text/plain
Content-Length: 200

SOAP HTTP Binding

A SOAP method is an HTTP request/response that complies with the SOAP encoding rules.

HTTP + XML = SOAP

Let’s look at a HTTP header containing a soap message:

POST /Price HTTP/1.1
Host: www.mysite.com
Content-Type: application/soap+xml; charset=utf-8
Content-Length: 200

WSDL (Web Services
Description
Language)

WSDL stands for Web Service Description Language. A WSDL document is an XML document that describes
how the messages are exchanged. Let’s say we have created a Web service. Who is going to use that and
how does the client know which method to invoke and what parameters to pass? There are tools that can
generate WSDL from the Web service. Also there are tools that can read a WSDL document and create the
necessary code to invoke the Web service. So the WSDL is the Interface Definition Language (IDL) for Web
services.

UDDI (Universal
Description Discovery

UDDI stands for Universal Description Discovery and Integration. UDDI provides a way to publish and discover
information about Web services. UDDI is like a registry rather than a repository. A registry contains only

How would you go about…?

209

and Integration) reference information like the JNDI, which stores the EJB stub references. UDDI has white pages, yellow
pages and green pages. If the retail industry published a UDDI for a price check standard then all the retailers
can register their services into this UDDI directory. Shoppers will search the UDDI directory to find the retailer
interface. Once the interface is found then the shoppers can communicate with the services immediately.

The Web services can be registered for public use at http://www.uddi.org. Once the Web service is selected
through the UDDI then it can be located using the discovery process.

Before UDDI, there was no Internet standard for businesses to reach their customers and partners with
information about their products and services. Neitherr was there a method of how to integrate businesses into
each other's systems and processes. UDDI uses WSDL to describe interfaces to Web services

Next section covers some of the popular emerging technologies & frameworks. Some organizations
might be considering or already started using these technologies. All these have emerged over the
past 3 years. So it is vital that you have at least a basic understanding of these new paradigms and
frameworks because these new paradigms and frameworks can offer great benefits such as ease of
maintenance, reduction in code size, elimination of duplication of code, ease of unit testing, loose
coupling among components, light weight and fine grained objects etc.

Emerging Technologies/Frameworks

210

SECTION FOUR

Emerging Technologies/Frameworks…

This section covers some of the popular emerging technologies you need to be at
least aware of, if you have not already used them. If there are two or more interview
candidates with similar skills and experience then awareness or experience with
some of the emerging technologies can play a role in the decision. Some
organizations might be considering or already started using these technologies. So
it is well worth your effort to demonstrate that you understand the basics of
technologies like:

 Test Driven Development (TDD).

 Aspect Oriented Programming (AOP).

 Inversion of Control (IOC) (Also known as Dependency Injection).

 Annotation or attribute based programming (xdoclet etc).

 Spring framework.

 Hibernate framework.

 EJB 3.0

 JavaServer Faces (JSF)

Emerging Technologies/Frameworks

211

Why should you seriously consider these technologies?

This section covers some of the new and popular design paradigms such as Plain Old Java Objects (POJOs) and Plain Old Java
Interfaces (POJI) based services and interceptors, Aspect Oriented Programming (AOP), Dependency Injection (DI), and tools and
frameworks, which apply these new paradigms such as Spring, Hibernate, EJB 3.0, XDoclet, JSF, etc. All these have emerged over the
past 3 years. These new paradigms and frameworks can offer great benefits such as ease of maintenance, reduction in code size,
elimination of duplication of code, ease of unit testing, loose coupling among components, light weight and fine grained objects etc.

Q 01: What is Test Driven Development (TDD)?
A 01: TDD is an iterative software development process where you first write the test with the idea that it must fail.

This is a different approach to the traditional development where you write the application functionality first and
then write test cases. The major benefit of this approach is that the code becomes thoroughly unit tested (you can
use JUnit or other unit testing frameworks). For JUnit refer Q13 on “How would you go about…” section. TDD is
based on two important principles preached by its originator Kent Beck:

 Write new business code only if an automated unit test has failed: Business application requirements

drive the tests and tests drive the actual functional code. Each test should test only one business concept,
which means avoid writing a single test which tests withdrawing money from an account and depositing money
into an account. Any change in the business requirements will impact pre and post conditions of the test.
Talking about pre and post conditions, following design by contract methodology (Refer Q9 in Java section)
helps achieving TDD. In design by contract, you specify the pre and post conditions that act as contracts of a
method, which provides specification to write your tests against.

 Eliminate duplication from the code: A particular business concept should be implemented only once within

the application code. A code for checking an account balance should be centralized to only one place within
the application code. This makes your code decoupled, more maintainable and reusable.

I can hear some of you all saying how can we write the unit test code without the actual application code. Let’s
look at how it works in steps. The following steps are applied iteratively for business requirements.

STEP: 1 write some tests for a specific business requirement.

STEP: 2 write some basic structural code so that your test compiles but the test should fail (failures are the
pillars of success). For example just create the necessary classes and corresponding methods with skeletal code.

STEP: 3 write the required business code to pass the tests which you wrote in step 1.

STEP: 4 finally refactor the code you just wrote to make it is as simple as it can be. You can refactor your code
with confidence that if it breaks the business logic then you have unit test cases that can quickly detect it.

STEP: 5 run your tests to make sure that your refactored code still passes the tests.

STEP: 6 Repeat steps 1-5 for another business requirement.

To write tests efficiently some basic guidelines need to be followed:

 You should be able to run each test in isolation and in any order.
 The test code should not have any duplicate business logic.
 You should test for all the pre and post conditions as well as exceptions.
 Each test should concentrate on one business requirement as mentioned earlier.
 There are many ways to write test conditions so proper care and attention should be taken. In some cases

pair programming can help by allowing two brains to work in collaboration. You should have strategies to
overcome issues around state of data in RDBMS (Should you persist sample test data, which is a snapshot
of your actual data prior to running your tests? Or should you hard code data? Or Should you combine both
strategies? Etc).

Q 02: What is the point of Test Driven Development (TDD)?
A 02: TDD process improves your confidence in the delivered code for the following reasons.

 TDD can eliminate duplication of code and also disciplines the developer to focus his mind on delivering
what is absolutely necessary. This means the system you develop only does what it is suppose to do

Emerging Technologies/Frameworks

212

(because you first write test cases for the business requirements and then write the required functionality to
satisfy the test cases) and no more.

 These unit tests can be repeatedly run to alert the development team immediately if some one breaks any

existing functionality. All the unit tests can be run overnight as part of deployment process and test results
can be emailed to the development team.

 TDD ensures that code becomes thoroughly unit tested. It is not possible to write thorough unit tests if you

leave it to the end due to deadline pressures, lack of motivation etc.

 TDD complements design by contract methodology and gets the developer thinking in terms of pre and
post conditions as well as exceptions.

 When using TDD, tests drive your code and to some extent they assist you in validating your design at an

earlier stage.

 TDD also helps you refactor your code with confidence that if it breaks the business logic it gets picked up
when you run your unit tests next time.

 TDD promotes design to interface not implementation design concept. For example: when your code

has to take input from an external source or device which is not present at the time of writing your unit
tests, you need to create an interface, which takes input from another source in order for your tests to
work.

Q 03: What is aspect oriented programming? Explain AOP?
A 03: Aspect-Oriented Programming (AOP) complements OOP (Object Oriented Programming) by allowing the

developer to dynamically modify the static OO model to create a system that can grow to meet new requirements.

AOP allows you to dynamically modify your static model consisting mainly of business logic to include the code
required to fulfil the secondary requirements or in AOP terminology called cross-cutting concerns (secondary
requirements) like auditing, logging, security, exception handling etc without having to modify the original static
model (in fact, we don't even need to have the original code). Better still, we can often keep this additional code in
a single location rather than having to scatter it across the existing model, as we would have to if we were using
OOP on its own.

For example; A typical Web application will require a servlet to bind the HTTP request to an object and then
passes to the business handler object to be processed and finally return the response back to the user. So only a
minimum amount of code is initially required. But once you start adding all the other additional secondary
requirements or cross-cutting concerns like logging, auditing, security, exception-handling etc the code will inflate
to 2-4 times its original size. This is where AOP can assist by separately modularizing these cross-cutting
concerns and integrating theses concerns at runtime or compile time through aspect weaving. AOP allows rapid
development of evolutionary prototype using OOP by focussing only on the business logic by omitting concerns
such as security, auditing, logging etc. Once the prototype is accepted, additional concerns like security, logging,
auditing etc can be weaved into the prototype code to transfer it into a production standard application.

AOP nomenclature is different from OOP and can be described as shown below:

Join points: represents the point at which a cross-cutting concern like logging, auditing etc intersects with a main
concern like the core business logic. Join points are locations in programs’ execution path like method &
constructor call, method & constructor execution, field access, class & object initialization, exception handling
execution etc.

pointcut: is a language construct that identifies specific join points within the program. A pointcut defines a
collection of join points and also provides a context for the join point.

Advice: is an implementation of a cross-cutting concern which is a piece of code that is executed upon reaching a
pointcut within a program.

Aspect: encapsulates join points, pointcuts and advice into a reusable module for the cross-cutting concerns
which is equivalent to Java classes for the core concerns in OOP. Classes and aspects are independent of one
another. Classes are unaware of the presence of aspects, which is an important AOP concept. Only pointcut
declaration binds classes and aspects.

Emerging Technologies/Frameworks

213

Weaving is the process for interleaving separate cross-cutting concerns such as logging into core concern such
as business logic code to complete the system. AOP weaver composes different implementations of aspects into a
cohesive system based on weaving rules. The weaving process (aka injection of aspects into Java classes) can
happen at:

 Compile-time: Weaving occurs during compilation process.
 Load-time: Weaving occurs at the byte-code level at class loading time.
 Runtime: Similar to load-time where weaving occurs at byte-code level during runtime as join points are

reached in the executing application.

So which approach to use? Load-time and runtime weaving have the advantages of being highly dynamic and
enabling changes on the fly without having to rebuild and redeploy. But Load-time and runtime weaving adversely
affect system performance. Compile time weaving offers better performance but requires rebuilding and
redeployment to effect changes.

Let’s look at AOP language constructs with code samples. At a higher level AOP language has two parts:

 The AOP language specification: describes language constructs and syntax. The specification has two
high level steps:

STEP 1: Implementation of individual aspects like business logic, logging, security etc into corresponding
individual code so that a compiler can translate it into executable code. You can use languages like Java to
implement individual code.

Let’s look at a basic code for business logic aspect:

public class AccountProcessor {
 public void deposit(Currency amount) {
 //depositing logic only, no log statements
 }

 public void withdraw(Currency amount) throws InsufficientFundsException {
 //withdrawing logic only, no log statements
 }
}

Let’s look at a separate basic code for logging aspect

public interface Logger {
 public void log (String message);
}

STEP 2: Code weaving rules for individually composed code in step 1 to form a final system. This is
achieved through specifying the weaving rules through a language, which is responsible for composing
individual code developed in step 1. The weaving rule in our example is:

 Log public business logic method deposit() at the beginning.

The language for specifying weaving rules could be an extension of the implementation language. Let’s
look at a sample specification code for weaving written in AspectJ (freely available AOP for Java from
Xerox PARC):

/** aspect for logging */

public aspect LogAccountProcessor Operations {
 Logger logger = new ConsoleLogger();

 /** join point declaration */
 pointcut logAccount(): call (* AccountProcessor.deposit (..));

 /** advice to execute before call **/
 before() : logAccount() {

 logger.log(“Amount=” + amount);
 }
}

Emerging Technologies/Frameworks

214

 AOP language implementation: verifies the code’s correctness according to the AOP specification and

converts it into byte code that target JVM can execute. AOP language compilers perform two logical steps:

STEP 1: Combine the individual aspects based on the weaving rules.
STEP 2: Convert the resulting information into executable byte code.

For Java based AOP implementation, the JVM would load the weaving rules and then apply those rules to
subsequently loaded aspect classes by performing just-in-time aspect weaving.

The AOP generated resulting code after applying the weaving rules will look something like:

public class AccountProcessorWithLogging {
 Logger _logger;

 public void deposit(Currency amount) {
 _logger.log(“Amount=” + amount); // joint point defined
 //depositing logic
 }

 public void withdraw(Currency amount) throws InsufficientFundsException {
 //withdrawing logic only, no log statements because no join point defined.
 }
}

Q 04: What are the differences between OOP and AOP?
A 04:

Object Oriented Programming (OOP) Aspect Oriented Programming (AOP)
OOP looks at an application as a set of collaborating
objects. OOP code scatters system level code like logging,
security etc with the business logic code.

AOP looks at the complex software system as combined
implementation of multiple concerns like business logic, data
persistence, logging, security, multithread safety, error
handling, and so on. Separates business logic code from the
system level code. In fact one concern remains unaware of
other concerns.

OOP nomenclature has classes, objects, interfaces etc.

AOP nomenclature has join points, point cuts, advice, and
aspects.

Provides benefits such as code reuse, flexibility, improved
maintainability, modular architecture, reduced
development time etc with the help of polymorphism,
inheritance and encapsulation.

AOP implementation coexists with the OOP by choosing OOP
as the base language. For example: AspectJ uses Java as
the base language.

AOP provides benefits provided by OOP plus some additional
benefits which are discussed in the next question.

Q 05: What are the benefits of AOP?
A 05:

 OOP can cause the system level code like logging, transaction, security etc to scatter throughout the business
logic. AOP helps overcome this problem by centralising the cross-cutting concerns.

 AOP addresses each aspect separately in a modular fashion with minimal coupling and duplication of code.

This modular approach also promotes code reuse by using a business logic concern with a separate logger
aspect.

 It is also easier to add newer functionalities by adding new aspects and weaving rules and subsequently

regenerating the final code. This ability to add newer functionality as separate aspects enable application
designers to delay or defer some design decisions without the dilemma of over designing the application.

 Promotes rapid development of evolutionary prototype using OOP by focussing only on the business logic by

omitting cross-cutting concerns such as security, auditing, logging etc. Once the prototype is accepted,
additional concerns like security, logging, auditing etc can be weaved into the prototype code to transfer it into
a production standard application.

Emerging Technologies/Frameworks

215

 Developers can concentrate on one aspect at a time rather than having to think simultaneously about business
logic, security, logging, performance, multithread safety etc. Different aspects can be developed by different
developers based on their key strengths. For example: A security aspect can be developed by a security
expert or a senior developer who understands security.

Q 06: What is attribute or annotation oriented programming?
A 06: Before looking at attribute oriented programming let’s look at code generation processes. There are two kinds of

code generation processes.

Passive code generation: is template driven. Input wizards are used in modern IDEs like eclipse, Websphere
Studio Application Developer (WSAD) etc where parameters are supplied and the code generator carries out the
process of parameter substitution and source code generation. For example: in WSAD or eclipse you can create
a new class by supplying the “New Java class” wizard appropriate input parameters like class name, package
name, modifiers, superclass name, interface name etc to generate the source code. Another example would be
Velocity template engine, which is a powerful Java based generation tool from the Apache Software Foundation.

Active code generation: Unlike passive code generators the active code generators can inject code directly into
the application as and when required.

Attribute/Annotation oriented programming languages leverages the active code generation with the use of
declarative tags embedded within the application source code to generate any other kind of source code,
configuration files, deployment descriptors etc. These declarative metadata tags are called attributes or
annotations. The purpose of these attributes is to extend the functionality of the base language like Java, with the
help of custom attributes provided by other providers like Hibernate framework, Spring framework, XDoclet etc.
The attributes or annotations are specified with the symbol “@<label>”. JDK1.5 has a built-in runtime support for
attributes.

Let’s look at an example. Say we have a container managed entity bean called Account. Using attribute oriented
programming we can generate the deployment descriptor file ejb-jar.xml by embedding some attributes within the
bean implementation code.

/**
 * @ejb.bean
 * name=”Account”
 * jndi-name =”ejb/Account”
 */
public abstract class AccountBean implements EntityBean {
 ….
}

The above-embedded attributes can generate the ejb-jar.xml as shown below using XDoclet:

<ejb-jar>
 <entity>
 <ejb-name>Account</ejb-name>
 <home>com.AccountHome</home>
 <remote>com.Account</remote>
 <ejb-class>com.AccountBean</ejb-class>
 ….

 </entity>
</ejb-jar>

Q 07: What are the pros and cons of annotations over XML based deployment descriptors?
A 07: Service related attributes in your application can be configured through a XML based deployment descriptor files

or annotations. XML based deployment descriptor files are processed separately from the code, often at runtime,
while annotations are compiled with your source code and checked by the compiler.

XML Annotations
More verbose because has to duplicate a lot of
information like class names and method names from
your code.

Less verbose since class names and method names are part of
your code.

Less robust due to duplication of information which More robust because annotations are processed with your code

Emerging Technologies/Frameworks

216

introduces multiple points for failure. If you misspell a
method name then the application will fail.

and checked by the compiler for any discrepancies and
inaccuracies.

More flexible since processed separately from the code.
Since it is not hard-coded can be changed later. Your
deployment team has a great flexibility to inspect and
modify the configuration.

Less flexible since annotations are embedded in Java comment
style within your code.

For example, to define a stateless session EJB 3.0 with
annotations, which can serve both local and remote clients:

@Stateless
@Local ({LocalCounter.class})
@Remote ({RemoteCounter.class})

public class CounterBean implements LocalCounter,
RemoteCounter {
 ...
}

XML files can express complex relationships and
hierarchical structures at the expense of being verbose.

Annotations can hold only a small amount of configuration
information and most of plumbing has to be done in the
framework.

Which one to use? Annotations are suitable for most application needs. XML files are more complex and can be
used to address more advanced issues. XML files can be used to override default annotation values. Annotations
cannot be used if you do not have access to source-code. The decision to go with annotation or XML depends
upon the architecture behind the framework. For example Spring is primarily based on XML and EJB 3.0 is
primarily based on annotations, but both support annotations and XML to some degree. EJB 3.0 uses XML
configuration files as an optional overriding mechanism and Spring uses annotations to configure some Spring
services.

Q 08: What is XDoclet?
A 08: XDoclet is an open source code generation engine for attribute oriented programming from SourceForge.net

(http://xdoclet.sourceforge.net/xdoclet/index.html). So you add attributes (i.e. metadata) in JavaDoc style tags
(@ejb.bean) and XDoclet will parse your source files and JavaDoc style attributes provided in the Java comment
with @ symbol to generate required artifacts like XML based deployment descriptors, EJB interfaces etc. XDoclet
can generate all the artifacts of an EJB component, such as remote & local interfaces as well as deployment
descriptors. You place the required attributes on the relevant classes and methods that you want to process.

Q 09: What is inversion of control (IOC) (also known as dependency injection)?
A 09: Inversion of control or dependency injection is a term used to resolve component dependencies by injecting an

instantiated component to satisfy dependency as opposed to explicitly requesting a component. So components
will not be explicitly requested but components are provided as needed with the help of an Inversion of controller
containers. This is analogous to the Hollywood principal where the servicing components say to the requesting
client code “don’t call us, we’ll call you”. Hence it is called inversion of control.

Most of you all are familiar with the software development context where client code (requesting code)
collaborates with other dependent components (or servicing components) by knowing which components to talk
to, where to locate them and how to talk with them. This is achieved by embedding the code required for locating
and instantiating the requested components within the client code. The above approach will tightly couple the
dependent components with the client code. This tight coupling can be resolved by applying the factory design
pattern and program to interfaces not to implementations driven development. But the factory design pattern
is still an intrusive mechanism because servicing components need to be requested explicitly. Let us look at how
dependency injection comes to our rescue. It takes the approach that clients declare their dependency on
servicing components through a configuration file (like xml) and some external piece of code assumes the
responsibility of locating and instantiating these servicing components and supplying the relevant references when
needed to the client code. This external piece of code is often referred to as IOC (aka dependency injection)
container or framework.

IOC or dependency injection containers generally control creation of objects (by calling “new”) and resolve
dependencies between objects it manages. Spring framework, Pico containers, Hivemind etc are IoC containers to
name a few. IOC containers support eager instantiation, which is quite useful if you want self-starting services
that “come up” on their own when the server starts. They also support lazy loading, which is useful when you
have many services which may only be sparsely used. Here is pseudo code for how IOC would work:

Emerging Technologies/Frameworks

217

XML declaration (beans.xml) showing objects that need to be instantiated and dependencies between them.
Dependency is declared as property element.

<beans>
 <bean id=”FlightReservation” class=”com.FlightReservation” />
 <bean id=”FlightReservation” class=”com.HotelReservation” />
 <bean id=”TripPlanner” class=”com.TripPlanner”>
 <property name=”flight”><ref bean=”FlightReservation”/></property>
 <property name=”hotel”><ref bean=”HotelReservation”/></property>
 </bean>
 ………………………
</beans>

To initialize the container

ClassPathResource res = new ClassPathResource(“beans.xml”);
BeanFactory factory = new XmlBeanFactory(res);

The references to the implementation can be retrieved based on “id” attribute in the xml configuration file and all
the dependent components are implicitly instantiated in specified order and setter methods (i.e. setter injection)
are called to resolve the dependencies.

factory.getBean(“TripPlanner”);

Dependencies can be wired by either using Java code or using XML.

Q 10: What are the different types of dependency injections?
A 10: There are three types of dependency injections.

 Constructor Injection (e.g. Pico container, Spring etc): Injection is done through constructors.
 Setter Injection (e.g. Spring): Injection is done through setter methods.
 Interface Injection (e.g. Avalon): Injection is done through an interface.

Q 11: What are the benefits of IOC (aka Dependency Injection)?
A 11:

 Minimises the amount of code in your application. With IOC containers you do not care about how services are
created and how you get references to the ones you need. You can also easily add additional services by
adding a new constructor or a setter method with little or no extra configuration.

 Make your application more testable by not requiring any singletons or JNDI lookup mechanisms in your unit

test cases. IOC containers make unit testing and switching implementations very easy by manually allowing
you to inject your own objects into the object under test.

 Loose coupling is promoted with minimal effort and least intrusive mechanism. The factory design pattern is

more intrusive because components or services need to be requested explicitly whereas in IOC the
dependency is injected into requesting piece of code. Also some containers promote the design to interfaces
not to implementations design concept by encouraging managed objects to implement a well-defined service
interface of your own.

 IOC containers support eager instantiation and lazy loading of services. Containers also provide support for

instantiation of managed objects, cyclical dependencies, life cycles management, and dependency resolution
between managed objects etc.

Q 12: What is the difference between a service locator pattern and an inversion of control pattern?
A 12:

Service locator Inversion of Control (IOC)
The calling class which needs the dependent classes
needs to tell the service locator which classes are needed.
Also the calling classes have the responsibility of finding
these dependent classes and invoking them. This makes
the classes tightly coupled with each other.

In IoC (aka Dependency Injection) pattern the responsibility is
shifted to the IoC containers to locate and load the dependent
classes based on the information provided in the descriptor files.
Changes can be made to the dependent classes by simply
modifying the descriptor files. This approach makes the
dependent classes loosely coupled with the calling class.

Emerging Technologies/Frameworks

218

Difficult to unit test the classes separately due to tight
coupling.

Easy to unit test the classes separately due to loose coupling.

Q 13: Why dependency injection is more elegant than a JNDI lookup to decouple client and the service?
A 13: Here are a few reasons why a JNDI look up is not elegant:

 The client and the service being looked up must agree on a string based name, which is a contract not
enforced by the compiler or any deployment-time checks. You will have to wait till runtime to discover any
discrepancies in the string based name between the lookup code and the JNDI registry.

 The JNDI lookup code is verbose with its own try-catch block, which is repeated across the application.

 The retrieved service objects are not type checked at compile-time and could result in casting error at

runtime.

Dependency injection is more elegant because it promotes loose coupling with minimal effort and least intrusive
mechanism. Dependency is injected into requesting piece of code by the IOC containers like Spring etc. With IOC
containers you do not care about how services are created and how you get references to the ones you need. You
can also easily add additional services by adding a new constructor or a setter method with little or extra
configuration.

Q 14: Explain Object-to-Relational (O/R) mapping?
A 14: There are several ways to persist data and the persistence layer is one of the most important layers in any

application development. O/R mapping is a technique of mapping data representation from an object model to a
SQL based relational model.

Ap
pl

ica
tio

n

E J B C o n t a in e r

Bu
sin

es
s D

ele
ga

te

[T
ra

ns
ac

tio
na

l d
em

ar
ca

tio
n]

O b j e c t - t o -R e la t io n a l (O / R) m a p p in g

P e r s i s t e n t O b je c ts

P e r s i s t e n t O b je c ts O / R m a p p in g t o o l

R e l a t i o n a l
D a t a b a s e
(R D B M S)

J D B C

EJ
B

(S
es

sio
n)

EJ
B

(E
nti

ty)

R M I/ I IO P

DA
O

int
er

fac
e

DA
O

Im
pl

O/R mapping is well suited for read modify write centric applications and not suited for write centric
applications (i.e. batch processes with large data sets like 5000 rows or more) where data is seldom read. O/R
mapping tools allow you to model inheritance (Refer Q101 in Enterprise section), association and composition
class relationships. O/R mapping tools work well in 80-90% of cases and use most of the basic database features
like stored procedures, triggers etc, when O/R mapping is not appropriate. Keep in mind that no one size fits all
solution. Always validate your architectural design with a vertical slice and test for performance. Some times you
have to handcraft your SQL and a good O/R mapping tool should allow that. O/R mapping tools allow your
application to be less verbose, more portable and more maintainable.

Q 15: Give an overview of hibernate framework?
A 15: Hibernate is a full-featured, open source Object-to-Relational (O/R) mapping framework. Unlike EJB, Hibernate

can work inside or outside of a J2EE container. Hibernate works with Plain Old Java Objects (POJOs), which is
much like a JavaBean.

SessionFactory is Hibernate’s concept of a single datastore and is threadsafe so that many threads can access it
concurrently and request for sessions and immutable cache of compiled mappings for a single database. A

Emerging Technologies/Frameworks

219

SessionFactory is usually only built once at startup with a load-on-startup servlet. SessionFactory should be
wrapped in some kind of singleton so that it can be easily accessed in an application code.

SessionFactory sf = new Configuration().configure().buildSessionfactory();

H ibe rna te A rch itec tu re

A p p lica tion

H ib ern ate
H ib e rna te .
p ro p ertie s

X M L
m a p pin g

P ers is ten t
O b jec ts

P e rs is ten t
O b jec ts

D a tab ase

S h o w in g co n fig files

S ess io n

A p p lica tionT ra nsien t
O b je cts

T ra nsien t
O b je cts

P e rs is te n t
O b jec ts

P ers is ten t
O b jec ts

T ran sa ctio n

S e ss io n F acto ry

T ra nsaction
F acto ry

C on nection
P ro vide r

JN D I JD B C JT A

D ata ba se

Layered arch itectu re

Session is a non-threadsafe object that represents a single unit-of-work with the database. Sessions are opened
by a SessionFactory and then are closed when all work is complete. To avoid creating too many sessions
ThreadLocal class can be used as shown below to get the current session no matter how many times you make
call to the currentSession() method.

…
public class HibernateUtil {

 …
public static final ThreadLocal local = new ThreadLocal();

public static Session currentSession() throws HibernateException {
 Session session = (Session) local.get();
 //open a new session if this thread has no session
 if(s == null) {
 session = sf.openSession();
 local.set(session);
 }

 return session;
}

}

It is also vital that you close your session after your unit of work completes.

Transaction is a single threaded, short lived object used by the application to specify atomicity. Transaction
abstracts your application code from underlying JDBC, JTA or CORBA transaction. At times a session can span
several transactions. A TransactionFactory is a factory for transaction instances. A ConnectionProvider is a
factory for pool of JDBC connections. A ConnectionProvider abstracts an application from underlying Datasource
or DriverManager.

Transaction tx = session.beginTransaction();
Employee emp = new Employee();
emp.setName(“Brian”);
emp.setSalary(1000.00);

session.save(emp);
tx.commit();
//close session

Persistent Objects and Collections are short lived single threaded objects, which store the persistent state and
some business functions. They are Plain Old Java Objects (POJOs) and are currently associated with one
session. As soon as the associated session is closed, persistent objects are detached and free to use directly as
transient data transfer objects in any application layers like business layer, presentation layer etc.

Emerging Technologies/Frameworks

220

Transient Object and Collections are instances of persistent objects that are currently not associated with a
session. They can be either instantiated by an application, which has not yet been persisted or they may have
been instantiated by a closed session.

Configuring Hibernate

Hibernate mappings can be either configured manually through a simple readable XML format (*.hbm.xml) or by
embedding mapping information directly in the source code using Hibernate doclet (@hibernate.<tags>), which is
a sibling to XDoclet and automatically generating the mapping XML file using an Ant script.

Querying with Hibernate

Hibernate provides very robust querying API that supports query strings, named queries and queries built as
aggregate expressions. The most flexible way is using the Hibernate Query Language syntax (HQL), which is easy
to understand and is an Object Oriented extension to SQL, which supports inheritance and polymorphism.

Query query = session.createQuery(“Select emp from Employee as emp where emp.sex = :sex”);
query.setCharacter(“sex”,’F’);

Type-safe queries can be handled by object oriented query by criteria approach. You can also use Hibernate’s
direct SQL query feature. If none of the above meets your requirements then you can get a plain JDBC connection
from a Hibernate session.

Q 16: Explain some of the pitfalls of Hibernate and explain how to avoid them?
A 16:

 Use the ThreadLocal session pattern when obtaining Hibernate session objects (Refer Q15 in Emerging
Technologies/Frameworks). This is important because Hibernate’s native API does not use the current thread
to maintain associations between session and transaction or between session and application thread.

 Handle resources properly by making sure you properly flush and commit each session object when persisting

information and also make sure you release or close the session object when you are finished working with it.
Most developers fall into this pitfall. If you pass a connection object to your session object then remember to
issue session.close().close () which will first release the connection back to the pool and then will close the
session. If you do not pass a connection object then issue session.close() to close the session.

 Use lazy associations when you use relationships otherwise you can unwittingly fall into the trap of executing

unnecessary SQL statements in your Hibernate applications. Let us look at an example: Suppose we have a
class Employee with many-to-one relationship with class Department. So one department can have many
employees. Suppose we want to list the name of the employees then we will construct the query as follows:

Query query = session.createQuery(“from Employee emp”);
List list = query.list();

Hibernate will generate the following SQL query:

SELECT <fields> from Employee;

If it only generates the query above then it is okay and it serves our purpose, but we get another set of SQL
queries without asking it to do anything. One for each of the referenced departments in Department table. If
you had 5 departments then the following query will be executed 5 times with corresponding department id.
This is the N+1 selects problem. In our example it is 5 + 1. Employee table is queried once and Department
table is queried 5 times.

SELECT <fields> from Department where DEPARTMENT.id=?

Solution is to make the Department class lazy, simply by enabling the lazy attribute in the Department’s
hbm.xml mapping definition file, which will result in executing only the first statement from the Employee table
and not the 5 queries from the Department table.

<class name=”com.Department” table=”Department” lazy=”true” > …. </class>

Only one query is required to return an employee object with its department initialized. In Hibernate, lazy
loading of persistent objects are facilitated by proxies (i.e. virtual proxy design pattern). In the above example
you have a Department object, which has a collection of Employee objects. Let’s say that Employee objects
are lazy loaded. If you make a call department.getEmployees() then Hibernate will load only the employeeIDs

Emerging Technologies/Frameworks

221

and the version numbers of the Employee objects, thus saving loading of individual objects until later. So what
you really have is a collection of proxies not the real objects. The reason being, if you have hundreds of
employees for a particular department then chances are good that you will only deal with only a few of them.
So, why unnecessarily instantiate all the Employee objects? This can be big performance in some situations.

 Avoid N+1 Selects problem: Having looked at the N+1 problem occurring inadvertently due to not having a

lazy association in the previous example, now what if we need the Departmental information in addition to the
Employee details. It is not a good idea to execute N+1 times.

<class name=”com.Department” table=”Department” lazy=”true” > …. </class>

Now to retrieve Departmental info you would:

Query query = session.createQuery(“from Employee emp”);
List list = query.list();
Iterator it = list.iterator();

while(iter.hasNext()) {
 Employee emp = (Employee) it.next();
 emp.getDepartment().getName(); //N+1 problem. Since Department is not already loaded so
 //additional query is required for each department.
}

The solution is to make sure that the initial query retrieves all the data needed to load the objects by issuing a
HQL fetch join (eager loading) as shown below:

“from Employee emp join fetch emp.Department dept”

The above HQL results in an inner join SQL as shown below:

SELECT <fields from Employee & Department> FROM employee
 inner join department on employee.departmentId = department.id.

Alternatively you can use a criteria query as follows:

Criteria crit = session.createCriteria(Employee.class);
Crit.setFetchMode(“department”, FetchMode.EAGER);

The above approach creates the following SQL:

SELECT <fields from Employee & Department> FROM employee
 left outer join department on employee.departmentId = department.id where 1=1;

Q 17: Give an overview of the Spring framework?
A 17: The Spring framework is an open source and comprehensive framework for enterprise Java development. Unlike

other frameworks, Spring does not impose itself on the design of a project due to its modular nature and, it has
been divided logically into independent packages, which can function independently.

It includes abstraction layers for transactions, persistence frameworks, Web development, a JDBC integration
framework, an AOP integration framework, email support, web services support etc. It also provides integration
modules for popular Object-to-Relational (O/R) mapping tools like Hibernate, JDO etc. The designers of an
application can feel free to use just a few Spring packages and leave out the rest. The other spring packages can
be introduced into an existing application in a phased manner. Spring is based on the IOC pattern (aka
Dependency Injection pattern) and also complements OOP (Object Oriented Programming) with AOP (Aspect
Oriented Programming). You do not have to use AOP if you do not want to and AOP complements Spring IoC to
provide a better middleware solution.

As shown in the diagram above the Spring modules are built on top of the core container, which defines how
beans are configured, created and managed.

Emerging Technologies/Frameworks

222

S p r in g fra m e w o r k m o d u le s

S p r in g C o re (B e a n c o n ta in e r, S u p p o rt in g u til itie s)

S p r in g A O P

S p r in g O R M
(H ib e rn a te s u p p o r t,

J D O s u p p o rt e tc)

S p rin g D A O
(T r a n s a c tio n s u p p o rt,
D A O s u p p o rt , J D B C

s u p p o r t e t c)

S p r in g W e b
(w e b u tilit ie s , w e b c o n te x t

e tc) S p r in g W e b
M V C

(M V C f ra m e w o rk ,
w e b v ie w s , J S P ,

P D F e tc)S p r in g C o n te x t
(U I s u p p o rt , a p p lic a tio n

c o n te x t, m a il, E J B
s u p p o rt e tc)

Core Container provides the essential basic functionality. The basic package in the spring framework is the
org.springframework.beans package. The Spring framework uses JavaBeans and there are two ways in which
clients can use the functionality of Spring framework -- BeanFactory and ApplicationContext. BeanFactory applies
the IOC pattern and separates an application’s configuration and dependency specification from the actual
application code.

Spring Application Context is a configuration file that provides context information to Spring framework. The
ApplicationContext builds on top of the BeanFactory and inherits all the basic features of Spring framework. In
addition to basic features, ApplicationContext provides additional features like event management, internalization
support, resource management, JNDI, EJB, email, and scheduling functionality. BeanFactory is useful in low
memory situations, which does not have the excess baggage an ApplicationContext has. ApplicationContext assist
the user to use Spring in a framework oriented way while the BeanFactory offers a programmatic approach.

Spring AOP enhances the Spring middleware support by providing declarative services. This allows any object
managed by Spring framework to be AOP enabled. Spring AOP provides “declararative transaction management
service” similar to transaction services provided by EJB. So with Spring AOP you can incorporate declarative
transaction management without having to rely on EJB. AOP functionality is also fully integrated into Spring for
logging and various other features.

Spring DAO uses org.springframework.jdbc package to provide all the JDBC related support required by your
application.This abstraction layer offers a meaningful hierarchy for handling exceptions and errors thrown by
different database vendors with the help of Spring’s SQLExceptionTranslator. So this abstraction layer simplifies
error handling and greatly reduces the amount of exception handling code you need to write. It also handles
opening and closing of connections.

Spring ORM framework is built on top of Spring DAO and it plugs into several object-to-relational (ORM) mapping
tools like Hibernate, JDO, etc. Spring provides very good support for Hibernate by supporting Hibernate sessions,
Hibernate transaction management etc.

Spring Web sits on top of the ApplicationContext module to provide context for Web based applications. This
provides integration with Struts MVC framework. Spring Web module also assists with binding HTTP request
parameters to domain objects and eases the tasks of handling multipart requests.

Spring MVC framework provides a pluggable MVC architecture. The users have a choice to use this framework or
continue to use other frameworks like Struts. Spring separates the roles of controller, model object, dispatcher and
handler object, which makes it easier to customize. Spring Web framework does not force user to use only JSP,
but accommodates various view technologies like XSLT, velocity templates, Tiles, etc.

Spring framework is a modular framework, which uses complementary technologies such as IoC and AOP to be
used in complex enterprise application development. Spring functionality can be used in any J2EE server.

Q 18: How would EJB 3.0 simplify your Java development compared to EJB 1.x, 2.x?
A 18: EJB 3.0 is taking ease of development very seriously and has adjusted its model to offer the POJO (Plain Old

Java Object) persistence and the new O/R mapping model inspired by and based on Hibernate (a less
intrusive model). In EJB 3.0, all kinds of enterprise beans are just POJOs. EJB 3.0 extensively uses Java
annotations, which replace excessive XML based configuration files and eliminate the need for rigid component

Emerging Technologies/Frameworks

223

model used in EJB 1.x, 2.x. Annotations can be used to define a bean’s business interface, O/R mapping
information, resource references etc.

 In EJB 1.x, 2.x the container manages the behaviour and internal state of the bean instances at runtime. All

the EJB 1.x, 2.x beans must adhere to a rigid specification. In EJB 3.0, all container services can be
configured and delivered to any POJO in the application via annotations. You can build complex object
structures with POJOs. Java objects can inherit from each other. EJB 3.0 components are only
coupled via their published business interfaces hence the implementation classes can be changed without
affecting rest of the application. This makes the application more robust, easier to test, more portable and
makes it easier to build loosely coupled business components in POJO.

 EJB 3.0 unlike EJB 1.x, 2.x does not have a home interface. The bean class may or may not implement a

business interface. If the bean class does not implement any business interface, a business interface will
be generated using the public methods. If only certain methods should be exposed in the business
interface, all of those methods can be marked with @BusinessMethod annotation.

 EJB 3.0 defines smart default values. For example by default all generated interfaces are local, but the

@Remote annotation can be used to indicate that a remote interface should be generated.

 EJB 3.0 supports both unidirectional and bidirectional relationships between entities.

 EJB 3.0 makes use of dependency injection to make decoupled service objects and resources like queue
factories, queues etc available to any POJO. Using the @EJB annotation, you can inject an EJB stub into
any POJO managed by the EJB 3.0 container and using @Resource annotation you can inject any
resource from the JNDI.

 EJB 3.0 wires runtime services such as transaction management, security, logging, profiling etc to

applications at runtime. Since those services are not directly related to application’s business logic they are
not managed by the application itself. Instead, the services are transparently applied by the container
utilizing AOP (Aspect Oriented Programming). To apply a transaction attribute to a POJO method using
annotation:

public class Account {

 @TransactionAttribute(TransactionAttributeType.REQUIRED)

public getAccountDetails(){
 …
 }
}

 EJB QL queries can be defined through the @NamedQuery annotation. You can also create regular

JDBC style queries using the EntityManager. POJOs are not persistent by birth and become persistent
once it is associated with an EntityManager.

Q 19: Briefly explain key features of the JavaServer Faces (JSF) framework?
A 19: JavaServer Faces is a new framework for building Web applications using java. JSF provides you with the

following main features:

 Basic user interface components like buttons, input fields, links etc. and custom components like tree/table
viewer, query builder etc. JSF was built with a component model in mind to allow tool developers to support
Rapid Application Development (RAD). User interfaces can be created from these reusable server-side
components.

 Provides a set of JSP tags to access interface components. Also provides a framework for implementing

custom components.

 Supports mark up languages other than HTML like WML (Wireless Markup Language) etc by encapsulating

event handling and component rendering. There is a single controller servlet every request goes through
where the job of the controller servlet is to receive a faces page with components and then fire off events
for each component render the components using a render tool kit.

 Uses a declarative navigation model by defining the navigation rules inside the XML configuration file

faces-config.xml. This configuration file also defines bean resources used by JSF.

 JSF can hook into your model, which means the model is loosely coupled from JSF.

Emerging Technologies/Frameworks

224

Jav aSe rv e r Face s application structure

Web

WEB-INF

JSPs

c lasses

lib js f-im pl.jar
js f-api.jatr

face s -config.xm l
w eb.xml

input_accountNum be r .js p
output_accountNum be r .js p

AccountBe an.clas s

Let’s look at some code snippets. Texts are stored in a properties file called message.properties so that this
properties file can be quickly modified without having to modify the JSPs and also more maintainable because
multiple JSP pages can use the same property.

account_nuber = Account number
account_button = Get account details
account_message=Processing account number :

input_accountNumber.jsp

<%@ taglib uri="http://java.sun.com.jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com.jsf/core" prefix="f" %>
<f:loadBundle basename="messages" var="msg"/>

<html>
 ...
 <body>
 <f:view>
 <h:form id="accountForm">
 <h:outputText value="#{msg.account_number}" />
 <h:inputText value="#{accountBean.accountNumber}" />
 <h:commandButton action="getAccount" value="#{msg.account_button}" />
 </h:form>
 </f:view>
 </body>
</html>

AccountBean.Java

public class AccountBean {
 String accountNumber;

 public String getAccountNumber() {
 return accountNumber;
 }

 public void setAccountNumber(String accountNumber) {
 this.accountNumber = accountNumber;
 }

}

faces-config.xml

...
<faces-config>

 <navigation-rule>
 <form-view-id>/jsps/input_accountNumber.jsp</form-view-id>
 <navigation-case>
 <from-outcome>getAccount</from-outcome>
 <to-view-id>/jsps/output_accountNumber.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>

Emerging Technologies/Frameworks

225

 ...

 <managed-bean>
 <managed-bean-name>accountBean</managed-bean-name>
 <managed-bean-class>AccountBean</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>

</faces-config>

output_accountNumber.jsp

<html>
 ...
 <body>
 <f:view>
 <h3>
 <h:outputText value="#{msg.account_message}" />
 <h:outputText value="#{accountBean.accountNumber}" />
 </h3>
 </f:view>
 </body>
</html>

Q 20: How would the JSF framework compare with the Struts framework?
A 20:

Struts framework JavaServer Faces
Matured since Struts has been around for a few years.
It has got several successful implementations.

JSF is in its early access release and as a result somewhat
immature.

The heart of Struts framework is the Controller, which
uses the Front Controller design pattern and the
Command design pattern. Struts framework has got
only single event handler for the HTTP request.

The heart of JSF framework is the Page Controller Pattern where
there is a front controller servlet where all the faces request go
through with the UI components and then fire off events for each
component and render the components using a render toolkit. So
JSF can have several event handlers on a page. Also JSF
loosely couples your model, where it can hook into your model (i.e
unlike Struts your model does not have to extend JSF classes).

Struts does not have the vision of Rapid Application
Development (RAD).

JSF was built with a component model in mind to allow RAD. JSF
can be thought of as a combination of Struts framework for thin
clients and the Java Swing user interface framework for thick
clients.

Has got flexible page navigation using navigation rules
inside the struts-config.xml file and Action classes
using maoping.findForward(…) .

JSF allows for more flexible navigation and a better design
because the navigation rule (specified in faces-config.xml) is
decoupled from the Action whereas Struts forces you to hook
navigation into your Action classes.

Struts is a sturdy frame work which is extensible and
flexible. The existing Struts applications can be
migrated to use JSF component tags instead of the
original Struts HTML tags because Struts tags are
superseded and also not undergoing any active
development. You can also use the Struts-Faces
Integration library to migrate your pages one page at
a time to using JSF component tags.

JSF is more flexible than Struts because it was able to learn from
Struts and also extensible and can integrate with RAD tools etc.
So JSF will be a good choice for new applications.

So far we have discussed some of the emerging paradigms (IOC (aka dependency injection), AOP, Annotations Oriented Programming,
and O/R mapping) and some of the frameworks, which are based on these paradigms. These paradigms and frameworks simplify your
programming model by hiding the complexities behind the framework and minimising the amount of code an application developer has to
write. JSF is also gathering lot of momentum and popularity as a Web tier UI framework in new J2EE applications.

Sample interview questions

226

SECTION FIVE

Sample interview questions…

Tips:

 Try to find out the needs of the project in which you will be working and the

needs of the people within the project.

 80% of the interview questions are based on your own resume.

 Where possible briefly demonstrate how you applied your skills/knowledge in the

key areas as described in this book. Find the right time to raise questions and
answer those questions to show your strength.

 Be honest to answer technical questions, you are not expected to know

everything (for example you might know a few design patterns but not all of
them etc).

 Do not be critical, focus on what you can do. Also try to be humorous.

 Do not act in superior way.

Sample interview questions

227

Java

Questions Hint
Multi-threading
What language features are available to allow shared access to data in a multi-threading
environment?

Synchronized block,
Synchronized method,
wait, notify

What is the difference between synchronized method and synchronized block? When
would you use?

Block on subset of data. Smaller code
segment.

What Java language features would you use to implement a producer (one thread) and a
consumer (another thread) passing data via a stack?

wait, notify

Data Types
What Java classes are provided for date manipulation? Calendar, Date
What is the difference between String and StringBuffer? mutable, efficient
How do you ensure a class is Serializable? Implement Serializable
What is the difference between static and instance field of a class Per class vs. Per Object
What method do you need to implement to store class in Hashtable or HashMap? hashCode(), equals()
How do you exclude a field of the class from serialization? transient
Inheritance
What is the difference between an Interface and an abstract base class? interface inheritance, implementation

inheritance.
What does overriding a method mean? (What about overloading?) inheritance (different signature)
Memory
What is the Java heap, and what is the stack? dynamic, program thread execution.
Why does garbage collection occur and when can it occur? To recover memory, as heap gets full.
If I have a circular reference of objects, but I no longer reference any of them from any
executing thread, will these cause garbage collection problems?

no

Exceptions
What is the problem or benefits of catching or throwing type “java.lang.Exception”? Hides all subsequent exceptions.
What is the difference between a runtime exception and a checked exception? Must catch or throw checked

exceptions.

Web components

Questions HINT
JSP
What is the best practice regarding the use of scriptlets in JSP pages? (Why?) Avoid
How can you avoid scriptlet code? custom tags, Java beans
What do you understand by the term JSP compilation? compiles to servlet code
Servlets
What does Servlet API provide to store user data between requests? HttpSession
What is the difference between forwarding a request and redirecting? redirect return to browser
What object do you use to forward a request? RequestDispatcher
What do you need to be concerned about with storing data in a servlet instance fields? Multi-threaded.
What’s the requirement on data stored in HttpSession in a clustered (distributable)
environment?

Serializable

If I store an object in session, then change its state, is the state replicated to distributed
Session?

No, only on setAttribute() call.

How does URL-pattern for servlet work in the web.xml? /ddd/* or *.jsp
What is a filter, and how does it work? Before/after request, chain.

Enterprise

Questions Hint
JDBC
What form of statement would you use to include user-supplied values? PreparedStatement
Why might a preparedStatement be more efficient than a statement? Execution plan cache.
How would you prevent an SQL injection attack in JDBC? PreparsedStatement
What is the performance impact of testing against NULL in WHERE clause on Oracle? Full table scan.
List advantages and disadvantages in using stored procedures? Pro: integration with existing dbase,

reduced network traffic
Con: not portable, mutliple language
knowledge required

What is the difference between sql.Date, sql.Time, and sql.Timestamp? Date only, time only, date and time

Sample interview questions

228

If you had a missing int value how do you indicate this to PreparedStatement? setNull(pos, TYPE)
How can I perform multiple inserts in one database interaction? executeBatch
Given this problem: Program reads 100,000 rows, converts to Java class in list, then
converts list to XML file using reflection. Runs out of program memory. How would you
fix?

Read one row at time, limit select,
allocate more heap (result set =
cursor)

How might you model object inheritance in database tables? Table per hierarchy, table per class,
table per concrete class

JNDI
What are typical uses for the JNDI API within an enterprise application Resource management, LDAP access
Explain the difference between a lookup of these “java:comp/env/ejb/MyBean” and
“ejb/MyBean”?

logical mapping performed for
java:comp/env

What is difference between new InitialContext() from servlet or from an EJB? Different JNDI environments initialised.
ejb controller by ejb-jar.xml, servlet by
web.xml

What is an LDAP server used for in an enterprise environment? authentication, authorisation
What is authentication, and authorisation? Confirming identity, confirming access

rights
EJB
What is the difference between Stateless and Stateful session beans (used?) Stateless holds per client state
What is the difference between Session bean and Entity bean (when used?) Entity used for persistence
With Stateless Session bean pooling, when would a container typically take a instance
from the pool and when would it return it?

for each business method

What is difference between “Required”, “Supports”, “RequiresNew” “NotSupported”,
“Mandatory”, “Never”

Needs transaction, existing OK but
doesn’t need, must start new one,
suspends transaction, must already be
started, error if transaction

What is “pass-by-reference” and “pass-by-value”, and how does it affect J2EE
applications?

Reference to actual object versus copy
of object. RMI pass by value

What EJB patterns, best practices are you aware of? Describe at least two. Façade, delegate, value list, DAO,
value object

How do you define finder methods for a CMP? Home, xml
If I reference an EJB from another EJB what can I cache to improve performance, and
where should I do the caching?

Home, set it up in setSessionContext

Describe some issues/concerns you have with the J2EE specification Get their general opinion of J2EE
Why is creating field value in setSessionContext of a performance benefit? pooled, gc
What is difference between System exception and application exception from an EJB
method?

System exception, container will auto
rollback

What do you understand by the term “offline optimistic locking” or long-lived business
transaction? How might you implement this using EJB?

version number, date, field
comparisons

Explain performance difference between getting a list of summary information (e.g.
customer list) via finder using a BMP entity vs Session using DAO?

BMP: n+1 database reads, n rmi calls

What is meant by a coarse-grained and a fine-grained interface? Amount of data transferred per method
call

XML/XSLT
What is the difference between a DOM parser and a SAX parser? DOM: reads entire model, SAX: event

published during parsing
What is difference between DTD and XML Schema? level of detail, Schema is in xml.
What does the JAXP API do for you? Parser independence
What is XSLT and how can it be used? xml translation
What would be the XPath to select any element called table with the class attribute of
info?

Table[@class=’info’]

JMS
How can asynchronous events be managed in J2EE? JMS
How do transactions affect the onMessage() handling of a MDB? Taking off queue
If you send a JMS message from an EJB, and transaction rollback, will message be
sent?

yes

How do you indicate what topic or queue MDB should react to? deployment descriptor
What is difference between a topic and a queue? broadcast, single
SOAP
What is a Web service, and how does it relate to SOAP? SOAP is the protocol
What is a common transport for SOAP messages? HTTP
What is WSDL? How would you use a WSDL file? XML description of Web Service:

interface and how to bind to it.
With new J2EE SOAP support what is: JAXR, JAX-RPC, and SAAJ? registry, rpc, attachments
Security
Where can container level security be applied in J2EE application? Web URI’s, ejb methods
How can the current user be obtained in a J2EE application (Web and Enterprise)? getUserPrincipal

getCallerPrincipal
How can you perform role checks in a J2EE application (Web and enterprise)? IsUserInRole()

Sample interview questions

229

IsCallerInRole()

Design

Questions Hint
OO
Name some type of UML diagrams. class, sequence, activity, use case
Describe some types of relationships can you show on class diagrams? generalisation, aggregation, uses
What is difference between association, aggregation, and generalisation? Relationship, ownership, inheritance
What is a sequence diagram used to display? Object instance interactions via

operations/signals
What design patterns do you use. Describe one you have used (not singleton) e.g. Builder, Factory, Visitor, Chain of

Command
Describe the observer pattern and an example of how it would be used e.g. event notification when model

changes to view
What are Use Cases? Define interaction between actors and

the system
What is your understanding of encapsulation? Encapsulate data and behaviour within

class
What is your understanding of polymorphism? Class hierarchy, runtime determine

instance
Process
Have you heard of or used test-driven development? e.g. XP process
What previous development process have you followed? Rational, XP, waterfall
How do you approach capturing client requirements? Numbered requirements, use case
What process steps would you include between the capture of requirements and when
coding begins?

Architecture, Design, UML modelling

How would you go about solving performance issue in an application? Set goals, establish bench, profile
application, make changes one at a
time

What developer based testing are you familiar with (before system testing?) Unit test discussion
How might you test a business system exposed via a Web interface? Automated script emulating browser
What is your experience with iterative development? Multiple iteration before release
Distributed Application
Explain a typical architecture of a business system exposed via Web interface? Explain tiers (presentation, enterprise,

resource) Java technology used in
each tiers, hardware distribution of
Web servers, application server,
database server

Describe what tiers you might use in a typical large scale (> 200 concurrent users)
application and the responsibilities of each tier (where would validation, presentation,
business logic, persistence occur).

Another way of asking same question
as above if their answer wasn’t
specific enough

Describe what you understand by being able to “scale” an application? How does a J2EE
environment aid scaling.

Vertical and Horizontal scaling. Thread
management, clustering, split tiers

What are some security issues in Internet based applications? authentication, authorisation, data
encryption, denial service, xss attacks

General

Questions Hints
What configuration management are you familiar with? e.g. CVS, ClearCase
What issue/tracking process have you followed? Want details on bug recording and

resolution process.
What are some key factors to working well within a team? Gets a view on how you would work

within interviewers’ environment.
What attributes do you assess when considering a new job? (what makes it a good one) Insight into what motivates you.
What was the last computing magazine you read? Last computing book? What is a
regular online magazine/reference you use?

Understand how up to date you keep
yourself.

GLOSSARY OF TERMS

230

GLOSSARY OF TERMS

TERM DESCRIPTION
ACID Atomicity, Consistency, Isolation, Duration.
aka Also known as.
AOP Aspect Oriented Programming
API Application Program Interface
AWT Abstract Window Toolkit
BLOB Binary Large Object
BMP Bean Managed Persistence
CGI Common Gateway Interface
CLOB Character Large OBject
CMP Container Managed Persistence
CORBA Common Object Request Broker Architecture
CRM Customer Relationships Management
CSS Cascading Style Sheets
DAO Data Access Object
DNS Domain Name Service
DOM Document Object Model
DTD Document Type Definition
EAR Enterprise ARchive
EIS Enterprise Information System
EJB Enterprise JavaBean
ERP Enterprise Resource Planning
FDD Feature Driven Development
GIF Graphic Interchange Format
GOF Gang Of Four
HQL Hibernate Query Language.
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
I/O Input/Output
IDE Integrated Development Environment
IIOP Internet Inter-ORB Protocol
IoC Inversion of Control
IP Internet Protocol
J2EE Java 2 Enterprise Edition
JAAS Java Authentication and Authorization Service
JAF JavaBeans Activation Framework
JAR Java ARchive
JAXB Java API for XML Binding
JAXP Java API for XML Parsing
JAXR Java API for XML Registries
JAX-RPC Java API for XML-based RPC
JAX-WS Java API for XML-based Web Services
JCA J2EE Connector Architecture
JDBC Java Database Connectivity
JDK Java Development Kit
JMS Java Messaging Service
JMX Java Management eXtensions
JNDI Java Naming and Directory Interface
JNI Java Native Interface
JRMP Java Remote Method Protocol
JSF JavaServer Faces
JSP Java Server Pages
JSTL Java Standard Tag Library
JTA Java Transaction API
JVM Java Virtual Machine
LDAP Lightweight Directory Access Protocol
MOM Message Oriented Middleware
MVC Model View Controller
NDS Novell Directory Service
NIO New I/O
O/R mapping Object to Relational mapping.
OO Object Oriented

GLOSSARY OF TERMS

231

OOP Object Oriented Programming
OOPL Object Oriented Programming Language
ORB Object Request Broker
ORM Object to Relational Mapping.
POJI Plain Old Java Interface
POJO Plain Old Java Object
RAR Resource adapter ARchive
RDBMS Relational Database Management System
RMI Remote Method Invocation
RPC Remote Procedure Call
RUP Rational Unified Process
SAAJ SOAP with attachment API for Java
SAX Simple API for XML
SOAP Simple Object Access Protocol
SQL Structured Query Language
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TDD Test Driven Development
UDDI Universal Description Discovery and Integration
UDP User Datagram Protocol
UI User Interface
UML Unified Modelling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
UTF
VO Value Object which is a plain Java class which has attributes or fields and corresponding getter getXXX()

and setter setXXX() methods .
WAR Web ARchive
WSDL Web Service Description Language
XHTML Extensible Hypertext Markup Language
XML Extensible Markup Language
XP Extreme Programming
XPath XML Path
XSD XML Schema Definition
XSL Extensible Style Language
XSL-FO Extensible Style Language – Formatting Objects
XSLT Extensible Style Language Transformation

RESOURCES

232

RESOURCES

Articles

 Sun Java Certified Enterprise Architect by Leo Crawford on http://www.leocrawford.org.uk/work/jcea/part1/index.html.

 Practical UML: A Hands-On Introduction for Developers by Randy Miller on http://bdn.borland.com/article/0,1410,31863,00.html

 W3 Schools on http://www.w3schools.com/default.asp.

 LDAP basics on http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/rzahy/rzahyovrco.htm.

 Java World articles on design patterns: http://www.javaworld.com/columns/jw-Java-design-patterns-index.shtml.

 Web Servers vs. App Servers: Choosing Between the Two By Nelson King on

http://www.serverwatch.com/tutorials/article.php/1355131.

 Follow the Chain of Responsibility by David Geary on Java World - http://www.javaworld.com/javaworld/jw-08-2003/jw-0829-

designpatterns.html.

 J2EE Design Patterns by Sue Spielman on http://www.onjava.com/pub/a/onjava/2002/01/16/patterns.html.

 The New Methodology by Martin Fowler on http://www.martinfowler.com/articles/newMethodology.html.

 Merlin brings nonblocking I/O to the Java platform by Aruna Kalagnanam and Balu G on

http://www.ibm.com//developerworks/Java/library/j-javaio.

 Hibernate Tips and Pitfalls by Phil Zoio on http://www.realsolve.co.uk/site/tech/hib-tip-pitfall-series.php.

 Hibernate Reference Documentation on http://www.hibernate.org/hib_docs/reference/en/html_single/.

 Object-relation mapping without the container by Richard Hightower on http://www-128.ibm.com/developerworks/library/j-

hibern/?ca=dnt515.

 Object to Relational Mapping and Relationships with Hibernate by Mark Eagle on http://www.meagle.com:8080/hibernate.jsp.

 Mapping Objects to Relational databases: O/R Mapping In detail by Scott W. Ambler on

http://www.agiledata.org/essays/mappingObjects.html.

 I want my AOP by Ramnivas Laddad on Java World.

 Websphere Application Server 5.0 for iSeries – Performance Considerations by Jill Peterson.

 Dependency Injection using pico container by Subbu Ramanathan .

 Websphere Application Server & Database Performance tuning by Michael S. Pallos on

http://www.bizforum.org/whitepapers/candle-5.htm.

 A beginners guide to Dependency Injection by Dhananjay Nene on

http://www.theserverside.com/articles/article.tss?l=IOCBeginners.

 The Spring series: Introduction to the Spring framework by Naveen Balani on http://www-

128.ibm.com/developerworks/web/library/wa-spring1.

 The Spring Framework by Benoy Jose.

 Inversion of Control Containersband the Dependency Injection pattern by Martin Fowler.

 Migrate J2EE Applications for EJB 3.0 by Debu Panda on JavaPro.

 EJB 3.0 in a nutshell by Anil Sharma on JavaWorld.

 Preparing for EJB 3.0 by Mike Keith on ORACLE Technology Network.

 Simplify enterprise Java development with EJB 3.0 by Michael Juntao Yuan on JavaWorld.

 J2SE: New I/O by John Zukowski on http://java.sun.com/developer/technicalArticles/releases/nio/.

RESOURCES

233

 High-Performance I/O arrives by Danniel F. Savarese on JavaPro.

 Hibernate – Proxy Visitor Pattern by Kurtis Williams.

 Best Practices for Exception Handling by Gunjan Doshi.

 Three Rules for Effective Exception Handling by Jim Cushing.

 LDAP and JNDI: Together forever – by Sameer Tyagi.

 Introduction To LDAP – by Brad Marshall.

 Java theory and practice: Decorating with dynamic proxies by Brian Goetz.

 Java Dynamic Proxies: One Step from Aspect-Oriented Programming by Lara D’Abreo.

 Java Design Patterns on http://www.allapplabs.com/java_design_patterns .

 Software Design Patterns on http://www.dofactory.com/Patterns/Patterns.aspx .

 JRun: Core Dump and Dr. Watson Errors on http://www.macromedia.com/cfusion/knowledgebase/index.cfm?id=tn_17534

 www.javaworld.com articles.

 http://www-128.ibm.com/developerworks/java articles.

 http://www.devx.com/java articles.

 www.theserverside.com/tss articles.

 http://javaboutique.internet.com/articles articles.

Books

 Beginning Java 2 by Ivor Horton.
 Design Patterns by Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides (GoF) .
 UML Distilled by Martin Fowler, Kendall Scott .
 Mastering Enterprise Java Beans II by Ed Roman, Scott Ambler, Tyler Jewell, Floyd Marinescu [download for free] .
 EJB Design Patterns by Floyd Marinescu [download for free] .
 Sun Certified Enterprise Architect for J2EE Technology Study Guide by Mark Cade and Simon Roberts.
 Professional Java Server Programming - J2EE edition by Wrox publication.
 Design Patterns Java Companion by James W. Cooper (Free download: http://www.patterndepot.com/put/8/JavaPatterns.htm).
 Test Driven Development – By Example, by Kent Beck.

INDEX

234

INDEX

Emerging Technologies/Frameworks
Briefly explain key features of the JavaServer Faces (JSF)

framework? 223
Explain Object-to-Relational (O/R) mapping? 218
Explain some of the pitfalls of Hibernate and explain how to

avoid them? 220
Give an overview of hibernate framework? 218
Give an overview of the Spring framework? 221
How would EJB 3.0 simplify your Java development

compared to EJB 1.x, 2.x? 222
How would the JSF framework compare with the Struts

framework? 225
What are the benefits of IOC (aka Dependency Injection)?

 217
What are the differences between OOP and AOP? 214
What are the different types of dependency injections? 217
What are the pros and cons of annotations over XML based

deployment descriptors? 215
What is aspect oriented programming? Explain AOP? 212
What is attribute or annotation oriented programming? 215
What is inversion of control (IOC) (also known as

dependency injection)? 216
What is Test Driven Development (TDD)? 211
What is the difference between a service locator pattern

and an inversion of control pattern? 217
What is the point of Test Driven Development (TDD)? 211
What is XDoclet? 216
Why dependency injection is more elegant than a JNDI

lookup to decouple client and the service? 218
Enterprise - Best practices and performance

considerations
Explain some of the J2EE best practices to improve

performance? 141
Explain some of the J2EE best practices? 139
Give some tips on J2EE application server performance

tuning? 139
Enterprise - EJB 2.x

Can an EJB client invoke a method on a bean directly? 99
Discuss EJB container security? 105
Explain EJB architecture? 96
Explain exception handling in EJB? 103
Explain lazy loading and dirty marker strategies? 109
How can we determine if the data is stale (for example

when using optimistic locking)? 104
How do you rollback a container managed transaction in

EJB? 103
How to design transactional conversations with session

beans? 102
What are EJB best practices? 106
What are isolation levels? 101
What are not allowed within the EJB container? 105
What are the implicit services provide by an EJB container?

 101
What are transactional attributes? 101
What is a business delegate? Why should you use a

business delegate? 107
What is a distributed transaction? What is a 2-phase

commit? 102
What is a fast-lane reader? 109
What is a Service Locator? 109
What is a session façade? 108
What is a value object pattern? 108
What is dooming a transaction? 102

What is the difference between Container Managed
Persistence (CMP) and Bean Managed Persistence
(BMP)? 99

What is the difference between EJB 1.1 and EJB 2.0? What
is the difference between EJB 2.x and EJB 3.0? 100

What is the difference between EJB and JavaBeans? 95
What is the difference between optimistic and pessimistic

concurrency control? 104
What is the difference between session and entity beans?

 99
What is the difference between stateful and stateless

session beans? 99
What is the role of EJB 2.x in J2EE? 95

Enterprise - J2EE
Explain J2EE class loaders? 68
Explain MVC architecture relating to J2EE? 63
Explain the J2EE 3-tier or n-tier architecture? 61
So what is the difference between a component and a

service you may ask? 60
What are ear, war and jar files? What are J2EE Deployment

Descriptors? 64
What is J2EE? What are J2EE components and services?

 60
What is the difference between a Web server and an

application server? 64
Why use design patterns in a J2EE application? 64

Enterprise - JDBC
Explain differences among java.util.Date, java.sql.Date,

java.sql.Time, and java.sql.Timestamp? 86
How to avoid the “running out of cursors” problem? 85
What are JDBC Statements? What are different types of

statements? How can you create them? 83
What is a Transaction? What does setAutoCommit do? 84
What is JDBC? How do you connect to a database? 83
What is the difference between JDBC-1.0 and JDBC-2.0?

What are Scrollable ResultSets, Updateable ResultSets,
RowSets, and Batch updates? 85

What is the difference between statements and prepared
statements? 86

Enterprise - JMS
Discuss some of the design decisions you need to make

regarding your message delivery? 112
Give an example of a J2EE application using Message

Driven Bean with JMS? 114
How JMS is different from RPC? 110
What are some of the key message characteristics defined

in a message header? 111
What is Message Oriented Middleware? What is JMS? 110
What type of messaging is provided by JMS? 111

Enterprise - JNDI & LDAP
Explain the difference between the look up of “java

comp/env/ejb/MyBean” and “ejb/MyBean”? 88
Explain the RMI architecture? 90
How will you pass parameters in RMI? 93
What are the differences between RMI and a socket? 92
What are the services provided by the RMI Object? 92
What is a JNDI InitialContext? 88
What is a remote object? Why should we extend

UnicastRemoteObject? 91
What is an LDAP server? And what is it used for in an

enterprise environment? 88
What is HTTP tunnelling or how do you make RMI calls

across firewalls? 93

INDEX

235

What is JNDI? And what are the typical uses within a J2EE
application? 87

What is the difference between RMI and CORBA? 92
Why use LDAP when you can do the same with relational

database (RDBMS)? 89
Enterprise - JSP

Explain hidden and output comments? 80
Explain the life cycle methods of a JSP? 78
How will you avoid scriptlet code in JSP? 83
Is JSP variable declaration thread safe? 80
Tell me about JSP best practices? 82
What are custom tags? Explain how to build custom tags?

 81
What are implicit objects and list them? 79
What are the differences between static and a dynamic

include? 79
What are the different scope values or what are the

different scope values for <jsp
usebean> ? 79

What are the main elements of JSP? What are scriplets?
What are expressions? 78

What is a JSP? What is it used for? What do you
understand by the term JSP translation phase or
compilation phase? 77

What is a TagExtraInfo class? 82
What is the difference between custom JSP tags and

Javabeans? 82
Enterprise - Logging, testing and deployment

Enterprise - Logging, testing and deployment 143
Give an overview of log4J? 141
How do you initialize and use Log4J? 142
What is the hidden cost of parameter construction when

using Log4J? 142
What is the test phases and cycles? 143

Enterprise - Personal
Have you used any load testing tools? 144
Tell me about yourself or about some of the recent projects

you have worked with? What do you consider your most
significant achievement? Why do you think you are
qualified for this position? Why should we hire you and
what kind of contributions will you make? 144

What operating systems are you comfortable with? 144
What source control systems have you used? 144
Which on-line technical resources do you use to resolve

any design and/or development issues? 144
Enterprise - RUP & UML

Explain the 4 phases of RUP? 127
What are the characteristics of RUP? Where can you use

RUP? 128
What are the different types of UML diagrams? 128
What is RUP? 126
What is the difference between a collaboration diagram and

a sequence diagram? 133
What is the difference between aggregation and

composition? 133
When to use ‘use case’ diagrams? 128
When to use activity diagrams? 132
When to use class diagrams? 129
When to use interaction diagrams? 131
When to use object diagrams? 130
When to use package diagrams? 130
When to use statechart diagram? 131
Why is UML important? 128

Enterprise - Servlet
Briefly discuss the following patterns Composite view, View

helper, Dispatcher view and Service to worker? Or
explain J2EE design patterns? 76

Explain declarative security for WEB applications? 74
Explain Servlet URL mapping? 77
Explain the directory structure of a WEB application? 71
Explain the Front Controller design pattern or explain J2EE

design patterns? 75
Explain the life cycle methods of a servlet? 70

How do you make a Servlet thread safe? What do you need
to be concerned about with storing data in Servlet
instance fields? 72

HTTP is a stateless protocol, so how do you maintain
state? How do you store user data between requests?
 69

If an object is stored in a session and subsequently you
change the state of the object, will this state change
replicated to all the other distributed sessions in the
cluster? 74

What are the considerations for servlet clustering? 73
What are the ServletContext and ServletConfig objects?

What are Servlet environment objects? 72
What is a filter, and how does it work? 74
What is a RequestDispatcher? What object do you use to

forward a request? 73
What is pre-initialization of a Servlet? 73
What is the difference between CGI and Servlet? 69
What is the difference between doGet () and doPost () or

GET and POST? 71
What is the difference between forwarding a request and

redirecting a request? 73
What is the difference between HttpServlet and

GenericServlet? 72
Enterprise - Software development process

What software development processes/principles are you
familiar with? 144

Enterprise - SQL, Tuning and O/R mapping
Explain a sub-query? How does a sub-query impact on

performance? 121
Explain inner and outer joins? 119
How can you performance tune your database? 122
How do you implement one-to-one, one-to-many and many-

to-many relationships while designing tables? 122
How do you map inheritance class structure to relational

data model? 123
How will you map objects to a relational database? How will

you map class inheritance to relational data model? 122
What is a view? Why will you use a view? What is an

aggregate function? 124
What is normalization? When to denormalize? 121

Enterprise - Struts
Are Struts action classes thread-safe? 135
Give an overview of Struts? 133
How do you implement internationalization in Struts? 136
How do you upload a file in Struts? 135
What design patterns are used in Struts? 136
What is a synchronizer token pattern in Struts or how will

you protect your Web against multiple submissions? 135
What is an action mapping in Struts? How will you extend

Struts? 136
Enterprise - Web and Application servers

Explain Java Management Extensions (JMX)? 138
What application servers, Web servers, LDAP servers, and

Database servers have you used? 137
What is a virtual host? 137
What is application server clustering? 138
What is the difference between a Web server and an

application server? 137
Enterprise - Web and Applications servers

Explain some of the portability issues between different
application servers? 139

Enterprise - XML
What is the difference between a SAX parser and a DOM

parser? 115
What is XML? And why is XML important? 114
What is XPATH? What is XSLT/XSL/XSL-FO/XSD/DTD

etc? What is JAXB? What is JAXP? 115
Which is better to store data as elements or as attributes?

 115

INDEX

236

How would you go about...?
How would you go about applying the design patterns in

your Java/J2EE application? 165
How would you go about applying the Object Oriented (OO)

design concepts in your Java/J2EE application? 160
How would you go about applying the UML diagrams in

your Java/J2EE project? 162
How would you go about describing the open source

projects like JUnit (unit testing), Ant (build tool), CVS
(version control system) and log4J (logging tool) which
are integral part of most Java/J2EE projects? 199

How would you go about describing the software
development processes you are familiar with? 163

How would you go about describing Web services? 206
How would you go about designing a Java/J2EE

application? 153
How would you go about determining the enterprise

security requirements for yor Java/J2EE application?194
How would you go about documenting your Java/J2EE

application? 152
How would you go about identifying any potential thread-

safety issues in your Java/J2EE application? 158
How would you go about identifying any potential

transactional issues in your Java/J2EE application? 159
How would you go about identifying performance and/or

memory issues in your Java/J2EE application? 156
How would you go about improving performance in your

Java/J2EE application? 157
How would you go about minimising memory leaks in your

Java/J2EE application? 157
Java

Briefly explain high-level thread states? 38
Discuss the Java error handling mechanism? What is the

difference between Runtime (unchecked) exceptions
and checked exceptions? What is the implication of
catching all the exceptions with the type “Exception”? 35

Explain different ways of creating a thread? 38
Explain Java class loaders? Explain dynamic class loading?

 13
Explain Outer and Inner classes (or Nested classes) in

Java? When will you use an Inner Class? 31
Explain static vs dynamic class loading? 13
Explain the assertion construct? 19
Explain the Java Collection framework? 21
Explain the Java I/O streaming concept and the use of the

decorator design pattern in Java I/O? 26
Explain threads blocking on I/O? 41
Give a few reasons for using Java? 12
Give an example where you might use a static method? 29
How can threads communicate with each other? How would

you implement a producer (one thread) and a consumer
(another thread) passing data (via stack)? 40

How can you improve Java I/O performance? 28
How do you express an ‘is a’ relationship and a ‘has a’

relationship or explain inheritance and composition?
What is the difference between composition and
aggregation? 15

How does Java allocate stack and heap memory? Explain
re-entrant, recursive and idempotent
methods/functions? 31

How does the Object Oriented approach improve software
development? 14

How does thread synchronization occurs inside a monitor?
What levels of synchronization can you apply? What is
the difference between synchronized method and
synchronized block? 39

How will you call a Web server from a stand alone Java
application? 44

If 2 different threads hit 2 different synchronized methods in
an object at the same time will they both continue? 40

If you have a circular reference of objects, but you no
longer reference it from an execution thread, will this

object be a potential candidate for garbage collection?
 34

What are “static initializers” or “static blocks with no function
names”? 14

What are access modifiers? 30
What are some of the best practices relating to Java

collection? 22
What are the advantages of Object Oriented Programming

Languages (OOPL)? 14
What are the benefits of the Java collection framework? 22
What do you know about the Java garbage collector? When

does the garbage collection occur? Explain different
types of references in Java? 34

What do you mean by polymorphism, inheritance,
encapsulation, and dynamic binding? 15

What is a daemon thread? 40
What is a factory pattern? 42
What is a final modifier? Explain other Java modifiers? 30
What is a singleton pattern? How do you code it in Java? 41
What is a socket? How do you facilitate inter process

communication in Java? 43
What is a user defined exception? 37
What is design by contract? Explain the assertion

construct? 18
What is serialization? How would you exclude a field of a

class from serialization or what is a transient variable?
What is the common use? 26

What is the difference between aggregation and
composition? 15

What is the difference between an abstract class and an
interface and when should you use them? 20

What is the difference between an instance variable and a
static variable? Give an example where you might use a
static variable? 29

What is the difference between C++ and Java? 12
What is the difference between final, finally and finalize() in

Java? 31
What is the difference between processes and threads? 37
What is the difference between yield and sleeping? 39
What is the main difference between a String and a

StringBuffer class? 25
What is the main difference between an ArrayList and a

Vector? What is the main difference between Hashmap
and Hashtable? 21

What is the main difference between pass-by-reference and
pass-by-value? 25

What is the main difference between shallow cloning and
deep cloning of objects? 29

What is the main difference between the Java platform and
the other software platforms? 12

What is type casting? Explain up casting vs down casting?
When do you get ClassCastException? 33

When is a method said to be overloaded and when is a
method said to be overridden? 21

When providing a user defined key class for storing objects
in the Hashmaps or Hashtables, what methods do you
have to provide or override (ie method overriding)? 24

When to use an abstract class? 20
When to use an interface? 21
Where and how can you use a private constructor? 30
Why is it not advisable to catch type “Exception”? 36
Why should you catch a checked exception late in a catch

{} block? 36
Why should you throw an exception early? 36
Why there are some interfaces with no defined methods

(i.e. marker interfaces) in Java? 21
Java - Applet

How will you communicate between two Applets? 49
How will you initialize an applet? 48
How would you communicate between applets and

servlets? 49
What is a signed Applet? 49

INDEX

237

What is the difference between an applet and an
application? 49

What is the order of method invocation in an applet? 48
Java - Performance & Memory leaks

How would you detect and minimise memory leaks in Java?
 51

How would you improve performance of a Java application?
 50

Why does the JVM crash with a core dump or a Dr.Watson
error? 52

Java - Swing
Explain layout managers? 47
Explain the Swing Action architecture? 45
Explain the Swing delegation event model? 48
Explain the Swing event dispatcher mechanism? 46
If you add a component to the CENTER of a border layout,

which directions will the component stretch? 45
What do you understand by MVC as used in a JTable? 47
What is the base class for all Swing components? 45
What is the difference between AWT and Swing? 44

Java/J2EE - Personal
Did you have to use any design patterns in your Java

project? 53
Do you have any role models in software development? 55

How do you handle pressure? Do you like or dislike these
situations? 54

Tell me about yourself or about some of the recent projects
you have worked with? What do you consider your most
significant achievement? Why do you think you are
qualified for this position? Why should we hire you and
what kind of contributions will you make? 53

What are your career goals? Where do you see yourself in
5-10 years? 55

What are your strengths and weaknesses? Can you
describe a situation where you took initiative? Can you
describe a situation where you applied your problem
solving skills? 54

What do you like and/or dislike most about your current
and/or last position? 54

What past accomplishments gave you satisfaction? What
makes you want to work hard? 55

What was the last Java related book or article you read? 55
Why are you leaving your current position? 54
Why do you want to work for us? 55

Key Points
Enterprise - Key Points 146
Java - Key Points 56

